给出一棵n个点的树(以1号点为根),定义dep[i]为点i到根路径上点的个数。众所周知,树上最近公共祖先问题可以用倍增算法解决。现在我们需要算出这个算法精确的复杂度。我们定义计算点i和点j最近公共组先的精确复杂度为bit[dep[i]-dep[lca(i,j)]]+bit[dep[j]-dep[lca(i,j)]](bit[i]表示i在二进制表示下有多少个1,lca(i,j)表示点i和点j的最近公共祖先)。为了计算平均所需的复杂度为多少,请你帮忙计算任意两点计算最近公共组先所需复杂度的总和。
即计算 sum{ bit[dep[i]-dep[lca(i,j)]]+bit[dep[j]-dep[lca(i,j)]] } ,1<=i<n,i+1<=j<=n;
 Input
  第一行一个数n表示点数(1<=n<=100,000)
  接下来n-1行每行两个数x,y表示一条边(1<=x,y<=n)
 Output
  一个数表示答案

  抱sxt大腿系列。。大概思路就是统计每个点往上跳每一步对答案的贡献。。先倍增预处理出每个点的那些父亲还有到父亲的那条边。

  大概就是统计一下能从子树里跳到当前点的节点数,那些点就能当前父亲其他儿子里能跳到父亲的节点一起贡献。。。

  当然不能每次直接跑。。就把查询都存到到父亲的边里面,最后再dfs一遍统计。

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#include<cstdlib>
#include<bitset>
//#include<ctime>
#define ll long long
#define ull unsigned long long
#define ui unsigned int
#define d double
//#define ld long double
using namespace std;
const int maxn=,mxnode=maxn<<;
struct zs{int too,pre;}e[maxn<<];int tot,last[maxn];
int fa[maxn][],fae[maxn][],num[maxn],pos[maxn],TIM,sz[maxn];
ll sum[maxn],sume[maxn<<];
int i,j,k,n,m;
ll ans; int ra,fh;char rx;
inline int read(){
rx=getchar(),ra=,fh=;
while((rx<''||rx>'')&&rx!='-')rx=getchar();
if(rx=='-')fh=-,rx=getchar();
while(rx>=''&&rx<='')ra=ra*+rx-,rx=getchar();return ra*fh;
} inline void dfs(int x){
register int i,to;pos[++TIM]=x,sz[x]=num[x]=;
for(i=;i<;i++)fa[x][i]=fa[fa[x][i-]][i-],fae[x][i]=fae[fa[x][i-]][i-];
for(i=last[x];i;i=e[i].pre)if((to=e[i].too)!=fa[x][])
fa[to][]=x,fae[to][]=i,dfs(to),sz[x]+=sz[to];
}
inline void DFS(int x){
register int i,to;
for(i=last[x];i;i=e[i].pre)if((to=e[i].too)!=fa[x][])
ans+=1ll*sume[i]*(sz[x]-sz[to]),DFS(to);
}
inline void insert(int a,int b){
e[++tot].too=b,e[tot].pre=last[a],last[a]=tot,
e[++tot].too=a,e[tot].pre=last[b],last[b]=tot;
}
int main(){
n=read();register int i,j;
for(i=;i<n;i++)insert(read(),read());
dfs();
int f;
for(j=;j<;j++)for(i=;i<=n;i++)if((f=fa[k=pos[i]][j]))
num[f]+=num[k],sum[f]+=num[k]+sum[k],sume[fae[k][j]]+=num[k]+sum[k];
DFS(),printf("%lld\n",ans);
}

[51nod1709]复杂度分析的更多相关文章

  1. 【树论 倍增】51nod1709 复杂度分析

    倍增与位运算有很多共性:这题做法有一点像「线段树上二分」和「线段树套二分」的关系. 给出一棵n个点的树(以1号点为根),定义dep[i]为点i到根路径上点的个数.众所周知,树上最近公共祖先问题可以用倍 ...

  2. 51nod1709复杂度分析

    题解: 注意到,如果第j位有贡献,那么从i往上跳2^j,然后不能再跳超过2^j. 因此可以考虑倍增. 代码: #include<bits/stdc++.h> typedef long lo ...

  3. 相似度分析,循环读入文件(加入了HanLP,算法第四版的库)

    相似度分析的,其中的分词可以采用HanLP即可: http://www.open-open.com/lib/view/open1421978002609.htm /****************** ...

  4. 文本离散表示(三):TF-IDF结合n-gram进行关键词提取和文本相似度分析

    这是文本离散表示的第二篇实战文章,要做的是运用TF-IDF算法结合n-gram,求几篇文档的TF-IDF矩阵,然后提取出各篇文档的关键词,并计算各篇文档之间的余弦距离,分析其相似度. TF-IDF与n ...

  5. 八大排序算法详解(动图演示 思路分析 实例代码java 复杂度分析 适用场景)

    一.分类 1.内部排序和外部排序 内部排序:待排序记录存放在计算机随机存储器中(说简单点,就是内存)进行的排序过程. 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需 ...

  6. 八大排序算法——堆排序(动图演示 思路分析 实例代码java 复杂度分析)

    一.动图演示 二.思路分析 先来了解下堆的相关概念:堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆:或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆.如 ...

  7. 八大排序算法——希尔(shell)排序(动图演示 思路分析 实例代码java 复杂度分析)

    一.动图演示 二.思路分析 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序:随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止. 简单插 ...

  8. 八大排序算法——基数排序(动图演示 思路分析 实例代码java 复杂度分析)

    一.动图演 二.思路分析 基数排序第i趟将待排数组里的每个数的i位数放到tempj(j=1-10)队列中,然后再从这十个队列中取出数据,重新放到原数组里,直到i大于待排数的最大位数. 1.数组里的数最 ...

  9. 八大排序算法——归并排序(动图演示 思路分析 实例代码java 复杂度分析)

    一.动图演示 二.思路分析 归并排序就是递归得将原始数组递归对半分隔,直到不能再分(只剩下一个元素)后,开始从最小的数组向上归并排序 1.  向上归并排序的时候,需要一个暂存数组用来排序, 2.  将 ...

随机推荐

  1. sqlserver 存储过程 游标实例

    if exists(select * from sysobjects where id = object_id(N'dbo.test_cursor') and type = 'P') drop PRO ...

  2. 447. Number of Boomerangs

    Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple of po ...

  3. 2018年的UX设计师薪酬预测,你能拿多少?

    以下内容由Mockplus团队翻译整理,仅供学习交流,Mockplus是更快更简单的原型设计工具.   一个经验丰富的设计师完全可以根据地区和专业来可以预期薪酬之间的差距,其中悬殊最高可达80K. 本 ...

  4. python logging一个通用的使用模板

    import os import logbook from logbook.more import ColorizedStderrHandler from functools import wraps ...

  5. Webpack 2 视频教程 009 - 配置 ESLint 实现代码规范自动测试 (上)

    原文发表于我的技术博客 这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲 ...

  6. git 分支操作

    查看git分支: git fetch刷新git git branch  -a 列出所有的分支 git checkout origin/要切换的分支 git branch -r 查看远程分支 git c ...

  7. oracle 处理时间和金额大小写的相关函数集合

    CREATE OR REPLACE FUNCTION MONEY_TO_CHINESE(MONEY IN VARCHAR2) RETURN VARCHAR2 IS C_MONEY ); M_STRIN ...

  8. Sql 两个表left join 查左表最时间最大的一条记录显示

    http://bbs.csdn.net/topics/350135010 参考 select *  from a aa left join b bb on aa.id=bb.cid and bb.ad ...

  9. Java的虚方法

    虚方法出现在Java的多态特性中, 父类与子类之间的多态性,对父类的函数进行重新定义.如果在子类中定义某方法与其父类有相同的名称和参数,我们说该方法被重写 (Overriding).在Java中,子类 ...

  10. 微信小程序之注册和入门

    一.注册 首先,在微信公众平台mp.weixin.qq.com上注册一个帐号. 小程序开放个人开发者申请注册,个人用户可访问微信公众平台,扫码验证个人身份后即可完成小程序帐号申请并进行代码开发. 这里 ...