牛的障碍Cow Steeplechase
题目描述
Farmer John has a brilliant idea for the next great spectator sport: Cow Steeplechase! As everyone knows, regular steeplechase involves a group of horses that race around a course filled with obstacles they must jump over. FJ figures the same contest should work with highly-trained cows, as long as the obstacles are made short enough.
In order to design his course, FJ makes a diagram of all the N (1 <= N <= 250) possible obstacles he could potentially build. Each one is represented by a line segment in the 2D plane that is parallel to the horizontal or vertical axis. Obstacle i has distinct endpoints (X1_i, Y1_i) and (X2_i, Y2_i) (1 <= X1_i, Y1_i, X2_i, Y2_i <= 1,000,000,000). An example is as follows:
--+-------
-----+-----
---+--- |
| | |
--+-----+--+- |
| | | | |
| --+--+--+-+-
| | | |
|
FJ would like to build as many of these obstacles as possible, subject to the constraint that no two of them intersect. Starting with the diagram above, FJ can build 7 obstacles:
----------
-----------
------- |
| |
| | |
| | | |
| | | |
| | | |
|
Two segments are said to intersect if they share any point in common, even an endpoint of one or both of the segments. FJ is certain that no two horizontal segments in the original input diagram will intersect, and that similarly no two vertical segments in the input diagram will intersect.
Please help FJ determine the maximum number of obstacles he can build.
给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段。
输入输出格式
输入格式:
* Line 1: A single integer: N.
* Lines 2..N+1: Line i+1 contains four space-separated integers representing an obstacle: X1_i, Y1_i, X2_i, and Y2_i.
输出格式:
* Line 1: The maximum number of non-crossing segments FJ can choose.
输入输出样例
输入样例#1:
3
4 5 10 5
6 2 6 12
8 3 8 5
输出样例#1:
2
Solution
网络流,正难则反,明显可以看出的是,我们可以把交叉的线段之间连边然后就可以求出最大匹配,这也就是我们需要去掉的线段的数目。一道入门题目?然而蒟蒻做了一个小时。。。
Code
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <set>
#include <map>
#define re register
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(arr) memset(arr, 0, sizeof(arr))
const int inf = 0x3f3f3f3f;
struct po{
int nxt,to,w;
}edge[200001];
struct point{
int x1,x2,y1,y2,id;
}a[200001];
int head[252],dep[252],s,t,n,m,num=-1,cur[2000001],sum;
inline int read()
{
int x=0,c=1;
char ch=' ';
while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
while(ch=='-') c*=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*c;
}
inline void add_edge(int from,int to,int w)
{
edge[++num].nxt=head[from];
edge[num].to=to;
edge[num].w=w;
head[from]=num;
}
inline void add(int from,int to,int w)
{
add_edge(from,to,w);
add_edge(to,from,0);
}
inline bool bfs()
{
memset(dep,0,sizeof(dep));
queue<int> q;
while(!q.empty())
q.pop();
q.push(s);
dep[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
for(re int i=head[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(dep[v]==0&&edge[i].w>0)
{
dep[v]=dep[u]+1;
if(v==t)
return 1;
q.push(v);
}
}
}
return 0;
}
inline int dfs(int u,int dis)
{
if(u==t)
return dis;
int diss=0;
for(re int& i=cur[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(edge[i].w!=0&&dep[v]==dep[u]+1)
{
int check=dfs(v,min(dis,edge[i].w));
if(check!=0)
{
dis-=check;
diss+=check;
edge[i].w-=check;
edge[i^1].w+=check;
if(dis==0) break;
}
}
}
return diss;
}
inline int dinic()
{
int ans=0;
while(bfs())
{
for(re int i=0;i<=n;i++)
cur[i]=head[i];
while(int d=dfs(s,inf))
ans+=d;
}
return ans;
}
int main()
{
memset(head,-1,sizeof(head));
n=read();
s=0;t=n+1;
for(re int i=1;i<=n;i++){
int x1,y1,x2,y2;
x1=read();y1=read();x2=read();y2=read();
if(x1>x2) swap(x1,x2);if(y1>y2) swap(y1,y2);
a[i].x1=x1;a[i].y1=y1;a[i].x2=x2;a[i].y2=y2;
if(a[i].x1==a[i].x2) a[i].id=1;
else a[i].id=2;
}
for(re int i=1;i<=n;i++){
if(a[i].id==1){
int H=a[i].x1;add(s,i,1);
for(re int j=i+1;j<=n;j++){
if(a[j].id==2&&a[j].x1<=H&&a[j].x2>=H&&a[i].y1<=a[j].y1&&a[i].y2>=a[j].y2){
add(i,j,1);
sum++;
}
}
}else {
add(i,t,1);
int L=a[i].y1;
for(re int j=i+1;j<=n;j++){
if(a[j].id==1&&a[j].y1<=L&&a[j].y2>=L&&a[i].x1<=a[j].x1&&a[i].x2>=a[j].x2){
add(j,i,1);
sum++;
}
}
}
}
int d=dinic();
cout<<n-d;
}
牛的障碍Cow Steeplechase的更多相关文章
- Luogu P3033 [USACO11NOV]牛的障碍Cow Steeplechase(二分图匹配)
P3033 [USACO11NOV]牛的障碍Cow Steeplechase 题意 题目描述 --+------- -----+----- ---+--- | | | | --+-----+--+- ...
- [USACO11NOV]牛的障碍Cow Steeplechase
洛谷传送门 题目描述: 给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段. 因为横的与横的,竖的 ...
- 洛谷 - P3033 - 牛的障碍Cow Steeplechase - 二分图最大独立集
https://www.luogu.org/fe/problem/P3033 二分图最大独立集 注意输入的时候控制x1,y1,x2,y2的相对大小. #include<bits/stdc++.h ...
- [USACO11NOV]牛的障碍Cow Steeplechase(匈牙利算法)
洛谷传送门 题目描述: 给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段. 因为横的与横的,竖的 ...
- 「USACO11NOV」牛的障碍Cow Steeplechase 解题报告
题面 横的,竖的线短段,求最多能取几条没有相交的线段? 思路 学过网络流的童鞋在哪里? 是时候重整网络流雄风了! 好吧,废话不多说 这是一道最小割的题目 怎么想呢? 要取最多,那反过来不就是不能取的要 ...
- bzoj1648 / P2853 [USACO06DEC]牛的野餐Cow Picnic
P2853 [USACO06DEC]牛的野餐Cow Picnic 你愿意的话,可以写dj. 然鹅,对一个缺时间的退役选手来说,暴力模拟是一个不错的选择. 让每个奶牛都把图走一遍,显然那些被每个奶牛都走 ...
- bzoj1623 / P2909 [USACO08OPEN]牛的车Cow Cars
P2909 [USACO08OPEN]牛的车Cow Cars 显然的贪心. 按速度从小到大排序.然后找车最少的车道,查询是否能填充进去. #include<iostream> #inclu ...
- bzoj1604 / P2906 [USACO08OPEN]牛的街区Cow Neighborhoods
P2906 [USACO08OPEN]牛的街区Cow Neighborhoods 考虑维护曼哈顿距离:$\left | x_{1}-x_{2} \right |+\left | y_{1}-y_{2} ...
- 洛谷——P1821 [USACO07FEB]银牛派对Silver Cow Party
P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...
随机推荐
- 网络模型+三次握手+四次挥手+DNS+HTTPS
网络模型+三次握手+四次挥手+DNS+HTTPS 这篇文章十分精华,所以整理一下: 一.网络模型 OSI七层模型,和TCP/IP五层模型(更为普遍) TCP/IP 协议集: 二.TCP协议(传输层)建 ...
- HDU 1863 畅通工程(Kruskal)
畅通工程 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- wire_format.cc:1091] String field 'accountid' contains invalid UTF-8 data when serializing a protocol buffer. Use the 'bytes' type if you intend to send raw bytes.
原因: 在protobuf 的string字段中存在中文,序列化的时候会出现截断数据,string这个类型带有检查功能 解决方法: 把protobuf中存在中文的string字段类型 改为bytes ...
- 让select下的option选中
这里以默认选中当前月为例: HTML: 性别 <select name="sex" id="sex"> <option value=" ...
- 第17章—前端分页(Bootstrap-Table)
spring boot 系列学习记录:http://www.cnblogs.com/jinxiaohang/p/8111057.html 码云源码地址:https://gitee.com/jinxia ...
- 48dp rhythm
- Changing an Elements innerHTML in TWebBrowser
I'm unable to change the innerHTML of a javascript element, but i can change the id so i'm not sure ...
- GIT学习笔记(3):分支管理
GIT学习笔记(3):分支管理 何谓分支 GIT是如何存储数据的 GIT不是存储文件差异或者变化量,而是一系列文件的快照.在Git提交时,会保存一个提交(commit)对象,该对象包含一个指向暂存内容 ...
- 表单向controller传值如果没填controller取到的是null
jsp前端表单,向controller传数据,如果没有值,后台传入的是null,比如checkbox未选中,后台设置的Integer[] ids,接收到的ids=null,hidden标签如果没有值, ...
- PHP preg_replace
preg_replace (PHP 3 >= 3.0.9, PHP 4, PHP 5) preg_replace -- 执行正则表达式的搜索和替换 说明 mixed preg_replace ( ...