2017-07-26  14:35:49

Prims算法,是一种基于“贪心”的求最小树的算法 ,以每次加入一个邻接边来建立最小树,直到找到N-1个边为止。

规则:以开始时生成树的集合为起始的顶点,然后找出与生成树集合邻接的边中,加权值最小的边来生成树,

为了确定新加入的边不会造成回路,所以每一个新加入的边,只允许有一个顶点在生成树的集合中。

适用:稠密图

用自己的话来讲:Prims算法跟之前的Kruskal算法不大一样,Kruskal算法主要是通过对权值进行从低到高的排序,确定先后加入的边

Prims算法则比较高级,从某一个点出发,寻找到跟这个点最近的这个点,两个组成集合,查找离这两个点最近的几个点,找到最近的点,

将其加入到生成树中,组成集合,一直到找到N-1个边为止;


代码如下:

//这里使用无向图
#include <iostream> using namespace std; const int MAXN = ;
const int INF = ; int n,e;
int w[MAXN][MAXN];
int mincount[MAXN]; //从初始顶点到该顶点的最小权值 void init()
{
int i,j;
int tx,ty;
for(i = ; i<=MAXN; i++)
for(j =; j<MAXN; j++)
w[i][j] = INF; cin >> n >> e; for(i = ; i<=e; i++)
{
cin >> tx >> ty >> w[tx][ty];
w[tx][ty] = w[ty][tx];
}
} void prim(int s) //从标号为s处开始生成树
{
int i,j,cnt = ,min; // cnt 是生成树所有边的权值之和
int k;
for(i = ; i<= n; i++)
mincount[i] = w[s][i]; // 初始化,设w[1][i]是初始点k到i的最小权值,如果没有就设为INF
mincount[s] = ; for(i = ; i < n; i++) //一共有n-1次
{
min = INF;
for(j = ; j <= n; j++)
{
if(mincount[j]!= && mincount[j]<min)
{
min = mincount[j];
k = j; //记录该点
}
mincount[k] = ;//将该点加入到最小生成树中
cnt += min; //将这条边权值加入到最小生成树中 for(j = ;j<=n;j++) //修正初始点到每个点的最小权值
{
if(w[k][j]<mincount[j])
mincount[j] = w[k][j];
}
}
}
cout << cnt << endl;
} int main()
{
init();
prim();
return ;
}

Prims算法 - 最小生成树的更多相关文章

  1. 数据结构与算法--最小生成树之Kruskal算法

    数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中 ...

  2. 数据结构与算法--最小生成树之Prim算法

    数据结构与算法--最小生成树之Prim算法 加权图是一种为每条边关联一个权值或称为成本的图模型.所谓生成树,是某图的一棵含有全部n个顶点的无环连通子图,它有n - 1条边.最小生成树(MST)是加权图 ...

  3. 贪心算法-最小生成树Kruskal算法和Prim算法

    Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来 ...

  4. hiho 1098 最小生成树二·Kruscal算法 (最小生成树)

    题目: 时间限制:10000ms 单点时限:1000ms 内存限制:256MB   描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用了——但是幸运的是,经过计算机的分析, ...

  5. prim算法,克鲁斯卡尔算法---最小生成树

    最小生成树的一个作用,就是求最小花费.要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光 ...

  6. Prim算法---最小生成树

    最小生成树的Prim算法也是贪心算法的一大经典应用.Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树. Prim算法过程: 一条边一条边地加, 维护一棵树. 初始 E = {}空 ...

  7. Kruskal算法-最小生成树

    2017-07-26  10:32:07 writer:pprp Kruskal算法是根据边的加权值以递增的方式,一次找出加权值最低的边来建最小生成树:并且每次添加的边不能造成生成树有回路,直到找到N ...

  8. 还是畅通工程(peime算法最小生成树)

    个人心得:就是最小生成树的运用,还是要理解好每次都是从已搭建好的生成树里面选择与她的补集中最短距离,所以那个book数组的更新 需要好生体会.不过还是有缺陷,算法的复杂度为O(n^2),看介绍说用优先 ...

  9. [讲解]prim算法<最小生成树>

    最小生成树的方法一般比较常用的就是kruskal和prim算法 一个是按边从小到大加,一个是按点从小到大加,两个方法都是比较常用的,都不是很难... kruskal算法在本文里我就不讲了,本文的重点是 ...

随机推荐

  1. HDU3308(LCIS) 线段树好题

    题目链接:传送门 题目大意:给你n个数,m个操作.操作有两种:1.U x y 将数组第x位变为y   2. Q x y 问数组第x位到第y位连续最长子序列的长度.对于每次询问,输出一个答案 题目思路: ...

  2. spring boot rabbitmq 多MQ配置 自动 创建 队列 RPC

      源码地址:https://github.com/hutuchong518/RabbitmqStudy 需求:   spring boot 整合 rabbitmq rpc功能, 需要将 请求和响应 ...

  3. 【BZOJ4367】[IOI2014]holiday假期 分治+主席树

    [BZOJ4367][IOI2014]holiday假期 Description 健佳正在制定下个假期去台湾的游玩计划.在这个假期,健佳将会在城市之间奔波,并且参观这些城市的景点.在台湾共有n个城市, ...

  4. npm and node 的一些问题

    1. node 安装 n 模块 用来管理 node的版本 2.  初始化项目出现这个问题 Error: Attempt to unlock XXX, which hasn't been locked ...

  5. mysql中修改字段的类型

    修改表字段的类型: ALTER TABLE 表名  MODIFY COLUMN 字段名 字段类型定义 如:将movie_mark修改为浮点型 alter table new_playing_video ...

  6. 我有一台 PC,上面有摄像头,怎么进行一场直播?

    如何推流与播放_Web端直播实践_最佳实践_视频直播-阿里云 https://help.aliyun.com/document_detail/57251.html?spm=a2c4g.11186623 ...

  7. JavaScript表示x的y次幂

    一.指数运算符(**) 示例 console.log(2 ** 2); // 4 console.log(3 ** 2); // 9 console.log('3' ** '2'); // 9 con ...

  8. Hibernate 处理事务

    1. Hibernate 的持久化类 1.1 什么是持久化类 持久化类: 就是一个 Java 类(JavaBean),这个 Java类与表建立了映射关系就可以是持久化类; 持久化类 = JavaBea ...

  9. 序列化组件之生成hypermedialink

    一  生成hypermedialink(极少数) 组件 class BooksSerializer(serializers.ModelSerializer): name = serializers.C ...

  10. 我的Android进阶之旅------>Android【设置】-【语言和输入法】-【语言】列表中找到相应语言所对应的列表项

    今天接到一个波兰的客户说有个APP在英文状态下一切运行正常,但是当系统语言切换到波兰语言的时候,程序奔溃了.所以首先我得把系统的语言切换到波兰语,问题是哪个是波兰语呢? 我还真的不认识哪个列表项代表着 ...