洛谷

这一题,乍一眼看上去只想到了最暴力的暴力——大概\(n^4\)吧。

仔细看看数据范围,发现\(1 \leq m \leq 2\),这就好办了,分两类讨论。

我先打了\(m=1\)的情况,拿了30分。

就相当于最大\(k\)段子段和。

直接用\(dp[i][j][0/1]\)数组表示第\(i\)个选了\(j\)段的最大值,0代表不选,1为选。

那么状态转移方程也很简单:

  • \(dp[i][j][1]=max(dp[i-1][j-1][0],dp[i-1][j][1])+t[i];\)
  • \(dp[i][j][0]=max(dp[i-1][j][0],dp[i-1][j][1]);\)

而\(m=2\)的情况怎么弄呢?

实际上设计好状态,状态转移方程就出来了。

设\(f[i][j][0,1,2,3,4]\)表示第\(i\)行选\(j\)个矩阵的最大值。

  • \(f[i][j][0]\)表示不选第\(i\)行。
  • \(f[i][j][1]\)表示选第\(i\)行的左边一段。
  • \(f[i][j][2]\)表示选第\(i\)行的右边一段。
  • \(f[i][j][3]\)表示选第\(i\)行左边和右边,分别代表两个段。
  • \(f[i][j][4]\)表示选第\(i\)行左右两边,只代表一段。

那么状态转移方程也很好出来了。

  • \(f[i][j][0]=max\{f[i-1][j][0],f[i-1][j][1],f[i-1][j][2],f[i-1][j][3],f[i-1][j][4]\};\)

  • \(f[i][j][1]=max\{f[i-1][j-1][0],f[i-1][j][1],f[i-1][j-1][2],f[i-1][j][3], f[i-1][j-1][4]\}+a[i][0];\)

  • \(f[i][j][2]=max\{f[i-1][j-1][0],f[i-1][j-1][1],f[i-1][j][2],f[i-1][j][3], f[i-1][j-1][4]\}+a[i][1];\)

  • \(f[i][j][4]=max\{f[i-1][j-1][1],f[i-1][j-1][2],f[i-1][j][3]\}+a[i][0]+a[i][1];\)

  • \(if~(j>=2)~f[i][j][3]=max\{f[i][j][3],f[i-1][j-2][4]+a[i][0]+a[i][1]\};\)

  • \(f[i][j][4]=max\{f[i-1][j-1][0],f[i-1][j-1][1],f[i-1][j-1][2],f[i-1][j-1][3],f[i-1][j][4]\}+a[i][0]+a[i][1];\)

那么状态转移方程出来了就上代码吧!

那么多\(max\)连在一起真是美如画呀~

#include <bits/stdc++.h>
#define N 101
#define K 11
using namespace std;
int n,m,k;
const int mx=0x3f3f3f3f; int dp[N][K][2],t[N];
void work1()
{
for (int i=1;i<=n;++i) cin>>t[i];
for (int i=1;i<=n;++i)
for (int j=1;j<=k;++j) {
dp[i][j][1]=max(dp[i-1][j][1],dp[i-1][j-1][0])+t[i];
dp[i][j][0]=max(dp[i-1][j][0],dp[i-1][j][1]);
}
cout<<max(dp[n][k][0],dp[n][k][1]);
} int f[N][K][5],a[N][2];
void work2()
{
memset(f,-mx,sizeof(f));
for (int i=0;i<=n;i++)
for (int j=0;j<=k;j++) f[i][j][0]=0;
for (int i=1;i<=n;++i) cin>>a[i][0]>>a[i][1];
for (int i=1;i<=n;++i)
for (int j=1;j<=k;++j) {
f[i][j][0]=max(f[i-1][j][0],max(f[i-1][j][1],max(f[i-1][j][2],max(f[i-1][j][3],f[i-1][j][4]))));
f[i][j][1]=max(f[i-1][j-1][0],max(f[i-1][j][1],max(f[i-1][j-1][2],max(f[i-1][j][3],f[i-1][j-1][4]))))+a[i][0];
f[i][j][2]=max(f[i-1][j-1][0],max(f[i-1][j-1][1],max(f[i-1][j][2],max(f[i-1][j][3],f[i-1][j-1][4]))))+a[i][1];
f[i][j][3]=max(f[i-1][j-1][1],max(f[i-1][j-1][2],f[i-1][j][3]))+a[i][0]+a[i][1];
if (j>1) f[i][j][3]=max(f[i][j][3],f[i-1][j-2][4]+a[i][0]+a[i][1]);
f[i][j][4]=max(f[i-1][j-1][0],max(f[i-1][j-1][1],max(f[i-1][j-1][2],max(f[i-1][j-1][3],f[i-1][j][4]))))+a[i][0]+a[i][1];
}
cout<<max(f[n][k][0],max(f[n][k][1],max(f[n][k][2],max(f[n][k][3],f[n][k][4]))));
} int main()
{
cin>>n>>m>>k;m!=2?work1():work2();
return 0;
}

洛谷 P2331 [SCOI2005]最大子矩阵的更多相关文章

  1. 洛谷P2331 [SCOI2005]最大子矩阵 DP

    P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...

  2. 洛谷P2331 [SCOI2005] 最大子矩阵[序列DP]

    题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 输入格式: 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

  3. 洛谷P2331[SCOI2005]最大子矩阵

    题目 DP 此题可以分为两个子问题. \(m\)等于\(1\): 原题目转化为求一行数列里的\(k\)块区间的和,区间可以为空的值. 直接定义状态\(dp[i][t]\)表示前i个数分为t块的最大值. ...

  4. BZOJ1084或洛谷2331 [SCOI2005]最大子矩阵

    BZOJ原题链接 洛谷原题链接 注意该题的子矩阵可以是空矩阵,即可以不选,答案的下界为\(0\). 设\(f[i][j][k]\)表示前\(i\)行选择了\(j\)个子矩阵,选择的方式为\(k\)时的 ...

  5. bzoj1084&&洛谷2331[SCOI2005]最大子矩阵

    题解: 分类讨论 当m=1的时候,很简单的dp,这里就不再复述了 当m=2的时候,设dp[i][j][k]表示有k个子矩阵,第一列有i个,第二列有j个 然后枚举一下当前子矩阵,状态转移 代码: #in ...

  6. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

  7. BZOJ1088或洛谷2327 [SCOI2005]扫雷

    BZOJ原题链接 洛谷原题链接 很容易发现答案就只有\(0,1,2\)三种答案,而且只要知道第一个格子是否有雷就可以直接顺推下去了. 所以我们跑一次首位有雷,跑一次首位无雷判断是否可行即可. #inc ...

  8. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

  9. 洛谷 P2331 最大子矩阵 题解

    题面 对于m==1和m==2两种状态进行不同的dp: 设sum[i][1]表示第一列的前缀和,sum[i][2]表示第二列的前缀和: sum[i][1]=sum[i-1][1]+a[i][1]; su ...

随机推荐

  1. 213. String Compression【easy】

    Implement a method to perform basic string compression using the counts of repeated characters. For ...

  2. linux下创建用户(转)

    转自 http://www.cnblogs.com/ylan2009/articles/2321177.html Note: 1, Linux Shell 按Tab键不能补全 发现使用新增的用户登陆的 ...

  3. CSU 1329: 一行盒子

    1329: 一行盒子 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 740  Solved: 145[Submit][Status][Web Board ...

  4. linux学习笔记10---命令nl

    nl命令在linux系统中用来计算文件中行号.nl 可以将输出的文件内容自动的加上行号! nl命令读取 file 参数(缺省情况下标准输入),计算输入中的行号,将计算过的行号写入标准输出.在输出中,n ...

  5. TCP/IP详解读书笔记:概述

    分层 分层是一种很通用的架构模式.通过分层,可以把一个系统分解成多个层,每个层专注于各自的功能,并提供接口给上面的层调用.上面的层不需要了解调用层的详细实现,只依赖于其接口,这就给维护带来了很大的好处 ...

  6. find命令应用exec及xargs

    find最普通的用法是查找文件,然后要对文件进行处理就需要用到参数-exec. 先看下manpage中介绍: -exec command ; Execute command; status is re ...

  7. android viewpager嵌套使用photoview异常问题

    最近,做项目时,遇到一个需求,需要像淘宝评论那样,一组图点开,然后可以双指滑动放大,并左右切换换图的功能.自然就想到了使用viewpager+photoview来实现这一功能,但是在实现后,却发现一个 ...

  8. java -Mac搭建本地服务器并映射到外网

    最近在学习Html,小有进步变想着写一个浪漫的静态页面给女朋友浪漫一下,那么问题就来了,如何把我的网页让对网络一窍不通的女朋友看到,所以便想到了是用自己电脑作为服务器的想法.百度以后整理如下: 首先搭 ...

  9. Django model :add a non-nullable field 'SKU' to product without a default; we can't do that

    You are trying to add a non-nullable field 'SKU' to product without a default; we can't do that (the ...

  10. js封装日历控件

    最终效果 代码实现 <script> $(function () { $(".j-calendar").calendar({ date: '2017-08-03', c ...