0. 前言

  这学期 Pattern Recognition 课程的 project 之一是手写数字识别,之二是做一个网站验证码的识别(鸭梨不小哇)。面包要一口一口吃,先尝试把模式识别的经典问题——手写数字识别做出来吧。这系列博客参考deep learning tutorial ,记录下用以下三种方法的实现过程:

  1. Logistic Regression - using Theano for something simple
  2. Multilayer perceptron - introduction to layer
  3. Deep Convolutional Network - a simplified version of LeNet5

  目的在于一方面从理论上帮自己理顺思路,另一方面作为课程最后一课 presentation 的材料。这三种方法从易到难,准确率也由低到高,我们先从简单的入手。

1. Binomial logistic regression model

  尽管线性分类器方法足够简单并且使用广泛,但是线性模型对于输出的 y 没有界限,y 可以取任意大或者任意小(负数)的值,对于某些问题来说不够 adequate, 比如我们想得到 0 到 1 之间的 probability 输出,这时候就要用到比 linear regression 更加强大的 logistic regression 了。

 y = w • x

  直觉上,一个线性模型的输出值 y 越大,这个事件 P(Y=1|x) 发生的概率就越大。 另一方面,我们可以用事件的几率(odds)来表示事件发生与不发生的比值,假设发生的概率是 p ,那么发生的几率(odds)是 p/(1-p) , odds 的值域是 0 到正无穷,几率越大,发生的可能性越大。将我们的直觉与几率联系起来的就是下面这个(log odds)或者是 logit 函数 (有点牵强 - -!):

  进而可以求出概率 p 关于 w 点乘 x 的表示:

  (注:为什么要写出中间一步呢?看到第三部分的你就明白啦!)

  这就是传说中的 sigmoid function 了,以 w 点乘 x 为自变量,函数图像如下:

(注:从图中可以看到 wx 越大,p 值越高,在线性分类器中,一般 wx = 0 是分界面,对应了 logistic regression 中 p = 0.5)

2. Parameter Estimation

  Logsitic regression 输出的是分到每一类的概率,参数估计的方法自然就是最大似然估计 (MLE) 咯。对于训练样本来说,假设每个样本是独立的,输出(标签)为 y = {0, 1},样本的似然函数就是将所有训练样本 label 对应的输出节点上的概率相乘, 令 p = P(Y=1|x) ,如果 y = 1, 概率就是 p, 如果 y = 0, 概率就是 1 - p ,(好吧,我是个罗嗦的家伙),  将这两种情况合二为一,得到似然函数:

  嗯?有连乘,用对数化为累加, balabala 一通算下来,就得到了对数似然函数为

  应用梯度下降法或者是拟牛顿法对 L(w) 求极大值,就可以得到 w 的估计值了。

3. Softmax regression

  这一小节旨在弄清 softmax regression 和 logistic regression 的联系,更多细节请参考 Andrew Ng 的英文资料,需要快速浏览也可以看看中文翻译版本,或者 wiki 一下。

  logistic regression 在多类上的推广又叫 softmax regression, 在数字手写识别中,我们要识别的是十个类别,每次从输入层输入 28×28 个像素,输出层就可以得到本次输入可能为 0, 1, 2… 的概率。得花点时间画个简易版本的,看起来更直观:

  OK, 左边是输入层,输入的 x 通过中间的黑线 w (包含了 bias 项)作用下,得到 w.x, 到达右边节点, 右边节点通过红色的函数将这个值映射成一个概率,预测值就是输入概率最大的节点,这里可能的值是 {0, 1, 2}。在 softmax regression 中,输入的样本属于第 j 类的概率可以写成:

  (注:对比第一部分提到过的中间一步,有什么不同?)   

注意到,这个回归的参数向量减去一个常数向量,会有什么结果:

  没有变化!这说明如果某一个向量是代价函数的极小值点,那么这个向量在减去一个任意的常数向量也是极小值点,这是因为 softmax 模型被过度参数化了。(题外话:回想一下在线性模型中,同时将 w 和 b 扩大两倍,模型的分界线没有变化,但是模型的输出可信度却增大了两倍,而在训练迭代中, w 和 b 绝对值越来越大,所以 SVM 中就有了函数距离和几何距离的概念)

  既然模型被过度参数化了,我们就事先确定一个参数,比如将 w1 替换成全零向量,将 w1.x = 0 带入 binomial softmax regression ,得到了我们最开始的二项 logistic regression (可以动手算一算), 用图就可以表示为

  (注:虚线表示为 0 的权重,在第一张图中没有画出来,可以看到 logistic regression 就是 softmax regression 的一种特殊情况)

  在实际应用中,为了使算法实现更简单清楚,往往保留所有参数,而不任意地将某一参数设置为 0。我们可以对代价函数做一个改动:加入权重衰减 (weight decay)。 权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。并且此时代价函数变成了严格的凸函数, Hessian矩阵变为可逆矩阵,保证有唯一的解。(感觉与线性分类器里限制 ||w|| 或者设置某一个 w 为全零向量一样起到了减参的作用,但是这个计算起来简单清晰,可以用高斯分布的 MAP 来推导,其结果是将 w 软性地限制在超球空间,有一点 “soft” 的味道,个人理解^ ^)

  加入权重衰减后的代价函数是:

  等号右边第一项是训练样本 label 对应的输出节点上的概率的负对数,第二项是 weight decay ,可以使用梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。总结起来,logistic regression 是 softmax regression 的一种特殊形式,前者是二类问题,后者是多类问题,前者的非线性函数的唯一确定的 sigmoid function (默认 label 为 0 的权重为全零向量的推导结果), 后者是 softmax, 有时候我们并不特意把它们区分开来。

好,基础知识准备完毕,下面我们就要在数字手写识别项目里面实战一下了。(^_^)


参考资料:

[1] 统计学习方法, 李航 着

[2] http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial

by daniel-D
from:http://www.cnblogs.com/daniel-D/

逻辑回归Logistic Regression 之基础知识准备的更多相关文章

  1. 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...

  2. 机器学习总结之逻辑回归Logistic Regression

    机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...

  3. 机器学习(四)--------逻辑回归(Logistic Regression)

    逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的   线性方程拟合的是连 ...

  4. 机器学习入门11 - 逻辑回归 (Logistic Regression)

    原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...

  5. Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!

    原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...

  6. 机器学习 (三) 逻辑回归 Logistic Regression

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  7. ML 逻辑回归 Logistic Regression

    逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...

  8. 逻辑回归(Logistic Regression)详解,公式推导及代码实现

    逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...

  9. 逻辑回归 Logistic Regression

    逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的 ...

随机推荐

  1. TCP三次握手和四次挥手及用户访问网页流程

    TCP报文格式 TCP通信是通过报文进行的,首先要了解TCP报文的格式. 序号:Seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记. 确认序号:Ack序号,占 ...

  2. 【Android开发日记】之入门篇(十五)——ViewPager+自定义无限ViewPager

    ViewPager 在 Android 控件中,ViewPager 一直算是使用率比较高的控件,包括首页的banner,tab页的切换都能见到ViewPager的身影. viewpager 来源自 v ...

  3. ActiveMQ基于JMS的pub/sub传播机制

    原文地址:[ActiveMQ实战]基于JMS的pub/sub传播机制 发布订阅模型 就像订阅报纸,我们可以选择一份或者多份报纸.比如:北京日报.人民日报.这些报纸就相当于发布订阅模型中的topic.如 ...

  4. BestCoder Round #86 二,三题题解(尺取法)

    第一题太水,跳过了. NanoApe Loves Sequence题目描述:退役狗 NanoApe 滚回去学文化课啦! 在数学课上,NanoApe 心痒痒又玩起了数列.他在纸上随便写了一个长度为 nn ...

  5. Python3发送qq邮件,测试通过

    import smtplib from email.mime.text import MIMEText # 收件人列表 mail_namelist = ["10402852@qq.com&q ...

  6. SEO页面标题Title的优化

    我在一个月前改过页面标题(Title),随后表现是:百度网页快照4天不更新,Google正常.而我仅仅是改了两个词组而已.在建博初期,修改Title的最频繁的时期,下面卢松松就我经历的修改Title过 ...

  7. 原生DOM选择器querySelector和querySelectorAll

    在传统的 JavaScript 开发中,查找 DOM 往往是开发人员遇到的第一个头疼的问题,原生的 JavaScript 所提供的 DOM 选择方法并不多,仅仅局限于通过 tag, name, id ...

  8. JDK1.8源码泛读之Arrays

    jdk1.8包含的常用集合工具类,一般包括两个: 数组工具类:`java.util.Arrays ` 结合工具类:`java.util.Collections` 今天就结合源码对`java.util. ...

  9. bzoj 1040 基向内环树dp

    #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk mak ...

  10. CodeForces 740C Alyona and mex

    构造. 比较骚的构造题.肯定可以构造出$min(R-L+1)$,只要$0$ $1$ $2$ $...$ $R-L$ $0$ $1$ $2$ $...$ $R-L$填数字即可,这样任意一段区间都包含了$ ...