Bzoj 3498 Cakes(三元环)
题面(权限题就不放题面了)
题解
三元环模板题,按题意模拟即可。
#include <cstdio>
#include <cstring>
#include <vector>
using std::vector;
const int N = 1e5 + 10, M = 2.5e5 + 10;
int n, m, a[N], deg[N], u[M], v[M], vis[N], tmp;
long long ans;
vector<int> to[N];
inline void swap(int &a, int &b) { tmp = a, a = b, b = tmp; }
inline int max(int a, int b) { return a > b ? a : b; }
inline int read() {
int ret = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') ret = ret * 10 + ch - '0', ch = getchar();
return ret;
}
int main () {
n = read(), m = read();
for(int i = 1; i <= n; ++i) a[i] = read();
for(int i = 1; i <= m; ++i) u[i] = read(), v[i] = read(), ++deg[u[i]], ++deg[v[i]];
for(int i = 1; i <= m; ++i) {
if(deg[u[i]] < deg[v[i]] || (deg[u[i]] == deg[v[i]] && u[i] > v[i])) swap(u[i], v[i]);
to[u[i]].push_back(v[i]);
}
for(int i = 1; i <= n; ++i) {
for(auto j : to[i]) vis[j] = i;
for(auto j : to[i])
for(auto k : to[j]) {
if(vis[k] == i) ans += max(max(a[i], a[j]), a[k]);
}
} printf("%lld\n", ans);
return 0;
}
Bzoj 3498 Cakes(三元环)的更多相关文章
- BZOJ.3498.[PA2009]Cakes(三元环 枚举)
题目链接 感觉我可能学的假的(复杂度没问题,但是常数巨大). 一个比较真的说明见这儿:https://czyhe.me/blog/algorithm/3-mem-ring/3-mem-ring/. \ ...
- BZOJ3498PA2009 Cakes——三元环
题目描述 N个点m条边,每个点有一个点权a.对于任意一个三元环(j,j,k)(i<j<k),它的贡献为max(ai,aj,ak) 求所有三元环的贡献和.N<100000,,m< ...
- BZOJ3498: PA2009 Cakes(三元环)
题意 题目链接 Sol 按照套路把边转成无向图,我们采取的策略是从权值大的向权值小的连边 然后从按权值从小到大枚举每个点,再枚举他们连出去的点\(v\) 如果\(v\)的度数\(\leqslant M ...
- BZOJ 3498: PA2009 Cakes 一类经典的三元环计数问题
首先引入一个最常见的经典三元环问题. #include <bits/stdc++.h> using namespace std; const int maxn = 100005; vect ...
- BZOJ 3498 PA2009 Cakes(三元环处理)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3498 [题目大意] N个点m条边,每个点有一个点权a. 对于任意一个三元环(j,j,k ...
- [BZOJ 3498] [PA 2009] Cakes
Description \(n\) 个点 \(m\) 条边,每个点有一个点权 \(a_i\). 对于任意一个三元环 \((i,j,k)(i<j<k)\),它的贡献为 \(\max(a_i, ...
- BZOJ 3498 PA2009 Cakes
本题BZOJ权限题,但在bzojch上可以看题面. 题意: N个点m条无向边,每个点有一个点权a. 对于任意一个三元环(i,j,k)(i<j<k),它的贡献为max(ai,aj,ak) 求 ...
- BZOJ.5407.girls(容斥 三元环)
题目链接 CF 原题 \(Description\) 有n个点,其中有m条边连接两个点.每一个没有连边的三元组\((i,j,k)(i<j<k)\)对答案的贡献为\(A*i+B*j+C*k\ ...
- BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)
题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...
随机推荐
- Codeforces Round #380 (Div. 2)/729B Spotlights 水题
Theater stage is a rectangular field of size n × m. The director gave you the stage's plan which act ...
- Create MSSQL Procedure
代码: CREATE PROCEDURE [dbo].[sp_UpdateCouponCount] AS GO
- 【HDU】2222 Keywords Search
[算法]AC自动机 [题解]本题注意题意是多少关键字能匹配而不是能匹配多少次,以及可能有重复单词. 询问时AC自动机与KMP最大的区别是因为建立了trie,所以对于目标串T与自动机串是否匹配只需要直接 ...
- 【BZOJ】1096 [ZJOI2007]仓库建设
[算法]DP+斜率优化 [题解]状态转移方程:f[i]=min(f[j]+g(i+1,j-1))+c[i] 关键在于如何O(1)计算g(i+1,j-1). 推导过程:http://blog.csdn. ...
- 大聊Python----SocketServer
什么是SocketServer? SocketServer的最主要的作用是实现并发处理,也就是可以多个用户同时上传和下载文件. socketserver模块简化了编写网络服务器的任务. sockets ...
- Linux 入门记录:八、Linux 文件系统
一.文件系统 操作系统通过文件系统管理文件及数据,磁盘或分区需要创建文件系统之后,才能被操作系统所用,创建文件系统的过程又称之为格式化.没有文件系统的设备又称之为裸设备(raw),某些环境会需要裸设备 ...
- 移动端测试===Android内存管理: 理解App的PSS
Android内存管理: 理解App的PSS 原文链接:http://www.littleeye.co/blog/2013/06/11/android-memory-management-unders ...
- 设计模式之笔记--抽象工厂模式(Abstract Factory)
抽象工厂模式(Abstract Factory) 定义 抽象工厂模式(Abstract Factory),提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类. 类图 描述 多个抽象产品 ...
- python多进程处理数据
当我们处理大规模数据如ImageNet的时候,单进程显得很吃力耗时,且不能充分利用多核CPU计算机的资源.因此需要使用多进程对数据进行并行处理,然后将结果合并即可.以下给出的是多进程处理的demo代码 ...
- 单文件组件(single-file components)
介绍 我们可以使用预处理器来构建简洁和功能更丰富的组件,比如 Pug,Babel (with ES2015 modules),和 Stylus.