题面(权限题就不放题面了)

题解

三元环模板题,按题意模拟即可。

#include <cstdio>
#include <cstring>
#include <vector>
using std::vector; const int N = 1e5 + 10, M = 2.5e5 + 10;
int n, m, a[N], deg[N], u[M], v[M], vis[N], tmp;
long long ans;
vector<int> to[N];
inline void swap(int &a, int &b) { tmp = a, a = b, b = tmp; }
inline int max(int a, int b) { return a > b ? a : b; } inline int read() {
int ret = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') ret = ret * 10 + ch - '0', ch = getchar();
return ret;
} int main () {
n = read(), m = read();
for(int i = 1; i <= n; ++i) a[i] = read();
for(int i = 1; i <= m; ++i) u[i] = read(), v[i] = read(), ++deg[u[i]], ++deg[v[i]];
for(int i = 1; i <= m; ++i) {
if(deg[u[i]] < deg[v[i]] || (deg[u[i]] == deg[v[i]] && u[i] > v[i])) swap(u[i], v[i]);
to[u[i]].push_back(v[i]);
}
for(int i = 1; i <= n; ++i) {
for(auto j : to[i]) vis[j] = i;
for(auto j : to[i])
for(auto k : to[j]) {
if(vis[k] == i) ans += max(max(a[i], a[j]), a[k]);
}
} printf("%lld\n", ans);
return 0;
}

Bzoj 3498 Cakes(三元环)的更多相关文章

  1. BZOJ.3498.[PA2009]Cakes(三元环 枚举)

    题目链接 感觉我可能学的假的(复杂度没问题,但是常数巨大). 一个比较真的说明见这儿:https://czyhe.me/blog/algorithm/3-mem-ring/3-mem-ring/. \ ...

  2. BZOJ3498PA2009 Cakes——三元环

    题目描述 N个点m条边,每个点有一个点权a.对于任意一个三元环(j,j,k)(i<j<k),它的贡献为max(ai,aj,ak) 求所有三元环的贡献和.N<100000,,m< ...

  3. BZOJ3498: PA2009 Cakes(三元环)

    题意 题目链接 Sol 按照套路把边转成无向图,我们采取的策略是从权值大的向权值小的连边 然后从按权值从小到大枚举每个点,再枚举他们连出去的点\(v\) 如果\(v\)的度数\(\leqslant M ...

  4. BZOJ 3498: PA2009 Cakes 一类经典的三元环计数问题

    首先引入一个最常见的经典三元环问题. #include <bits/stdc++.h> using namespace std; const int maxn = 100005; vect ...

  5. BZOJ 3498 PA2009 Cakes(三元环处理)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3498 [题目大意] N个点m条边,每个点有一个点权a. 对于任意一个三元环(j,j,k ...

  6. [BZOJ 3498] [PA 2009] Cakes

    Description \(n\) 个点 \(m\) 条边,每个点有一个点权 \(a_i\). 对于任意一个三元环 \((i,j,k)(i<j<k)\),它的贡献为 \(\max(a_i, ...

  7. BZOJ 3498 PA2009 Cakes

    本题BZOJ权限题,但在bzojch上可以看题面. 题意: N个点m条无向边,每个点有一个点权a. 对于任意一个三元环(i,j,k)(i<j<k),它的贡献为max(ai,aj,ak) 求 ...

  8. BZOJ.5407.girls(容斥 三元环)

    题目链接 CF 原题 \(Description\) 有n个点,其中有m条边连接两个点.每一个没有连边的三元组\((i,j,k)(i<j<k)\)对答案的贡献为\(A*i+B*j+C*k\ ...

  9. BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)

    题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...

随机推荐

  1. HEOI 2012 旅行问题

    2746: [HEOI2012]旅行问题 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 1009  Solved: 318[Submit][Statu ...

  2. [洛谷P2048] [NOI2010] 超级钢琴

    洛谷题目链接:[NOI2010]超级钢琴 题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号 ...

  3. PowerDesigner16 活动图

    活动是某件事情正在进行的状态.活动在状态机中表现为一个由一系列动作组成 的非原子的执行过程. 活动图是一种描述系统行为的图,它用于展现 参与行为的实体所进行的各种活动的顺序关系.活动图(Activit ...

  4. 不使用Tomcat,手写简单的web服务

    背景: 公司使用的YDB提供了http的查询数据库服务,直接通过url传入sql语句查询数据-_-||.ydb的使用参照:https://www.cnblogs.com/hd-zg/p/7115112 ...

  5. python学习笔记(七)之列表

    列表:是一个加强版的数组,什么东西都可以往里面放. 创建列表 创建一个普通列表: >>> member = ['operating system', 'data structure' ...

  6. 【洛谷 P1390】 公约数的和 (欧拉函数)

    题目链接 做过\(n\)遍这种题了... 答案就是\(\sum_{i=1}^{n}\sum_{j=1}^{n/i}[\varphi(j)*i]\) 线筛欧拉函数求前缀和直接算就行. #include ...

  7. Python3 面向对象编程高级语法

    1.静态方法: #!/usr/bin/env python # _*_ coding:utf-8 _*_ # Author:CarsonLi class Dog(object): def __init ...

  8. 安全测试===sqlmap(叁)转载

    十五.操作系统控制 1.执行任意操作系统命令 参数:--os-cmd和--os-shell 若数据库管理系统是MySQL.PostgreSQL或微软的SQL Server且当前用户有相关权限Sqlma ...

  9. 2017多校第8场 HDU 6134 Battlestation Operational 莫比乌斯反演

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6134 题意: 解法: 那么g(n)怎么求,我们尝试打表发现g(n)是有规律的,g(n)=g(n-1)+ ...

  10. U43597 积木

    题目背景 小 XX 感到很无聊,从柜里翻出了小时候玩的积木. 题目描述 这套积木里共有 \(n\) 块,每块积木都是一个长方体. 小 X 想知道这些积木拼成一个积木塔(不必每一块 积木都使用). 所谓 ...