【推导】【NTT】hdu6061 RXD and functions(NTT)
题意:给定一个n次多项式f(x)的各项系数,让你求f(x-Σai)的各项系数。
http://blog.csdn.net/v5zsq/article/details/76780053
推导才是最关键的部分……我的数学推导能力很弱,比赛的时候很难推出来……尤其是累加变量交换顺序、换元这两个常用的技巧在配凑卷积形式以及莫比乌斯反演中都很常用
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
#define N ((1<<18)+5)
#define MOD 998244353ll
ll Quick_Pow(ll a,ll p){
if(p==0){
return 1ll;
}
ll res=Quick_Pow(a,p>>1);
res=res*res%MOD;
if((p&1ll)==1ll){
res=(a%MOD*res)%MOD;
}
return res;
}
struct NTT{
int n,rev[N];
ll g;
void ini(int lim) {
g=3;//1004535809,998244353的原根都是3
n=1;
int k=0;
while(n<lim){
n<<=1;
++k;
}
for(int i=0;i<n;++i){
rev[i]=((rev[i>>1]>>1)|((i&1)<<(k-1)));
}
}
void dft(ll a[],int DFT) {
for(int i=0;i<n;++i){
if(i<rev[i]){
swap(a[i],a[rev[i]]);
}
}
for(int l=2;l<=n;l<<=1){
int m=l>>1;
ll wn=Quick_Pow(g,DFT==1 ? (MOD-1ll)/(ll)l : MOD-1ll-(MOD-1ll)/(ll)l);
for(int i=0;i<n;i+=l){
ll w=1;
for(int k=0;k<m;++k){
ll t=w*a[i+k+m]%MOD;
a[i+k+m]=(a[i+k]-t+MOD)%MOD;
a[i+k]=(a[i+k]+t)%MOD;
w=w*wn%MOD;
}
}
}
if(DFT==-1){
ll inv=Quick_Pow(n,MOD-2ll);
for(int i=0;i<n;++i){
a[i]=a[i]*inv%MOD;
}
}
}
void mul(ll a[],ll b[],int len) {
ini(len);
dft(a,1);
dft(b,1);
for(int i=0;i<n;++i){
a[i]=a[i]*b[i];
}
dft(a,-1);
}
}ntt;
ll c[N],A[N],B[N],jc[N],jcni[N];
int n,m;
int main(){
jc[0]=1;
jcni[0]=1;
for(int i=1;i<=100000;++i){
jc[i]=(jc[i-1]*(ll)i)%MOD;
jcni[i]=Quick_Pow(jc[i],MOD-2ll);
}
ll x;
// freopen("hdu6061.in","r",stdin);
while(scanf("%d",&n)!=EOF){
memset(A,0,sizeof(A));
memset(B,0,sizeof(B));
for(int i=0;i<=n;++i){
scanf("%lld",&c[i]);
}
ll a=0;
scanf("%d",&m);
for(int i=1;i<=m;++i){
scanf("%lld",&x);
a=(a+x)%MOD;
}
ll pw=1;
for(int i=0;i<=n;++i){
A[i]=(c[n-i]*jc[n-i])%MOD;
B[i]=(pw*jcni[i])%MOD;
pw=(pw*(MOD-a))%MOD;
}
ntt.mul(A,B,n*2+1);
for(int i=0;i<=n;++i){
printf("%lld ",(A[n-i]*jcni[i])%MOD);
}
puts("");
}
return 0;
}
【推导】【NTT】hdu6061 RXD and functions(NTT)的更多相关文章
- HDU6061 RXD and functions【NTT】
\(RXD\ and\ functions\) Problem Description RXD has a polynomial function \(f(x)\), \(f(x)=\sum ^{n} ...
- HDU 6061 RXD and functions NTT
RXD and functions Problem Description RXD has a polynomial function f(x), f(x)=∑ni=0cixiRXD has a tr ...
- HDU 6061 - RXD and functions | 2017 Multi-University Training Contest 3
每次NTT都忘记初始化,真的是写一个小时,Debug两个小时- - /* HDU 6061 - RXD and functions [ NTT ] | 2017 Multi-University Tr ...
- 2017 多校3 hdu 6061 RXD and functions
2017 多校3 hdu 6061 RXD and functions(FFT) 题意: 给一个函数\(f(x)=\sum_{i=0}^{n}c_i \cdot x^{i}\) 求\(g(x) = f ...
- HDU 6061 RXD and functions(NTT)
题意 给定一个\(n\) 次的 \(f\) 函数,向右移动 \(m\) 次得到 \(g\) 函数,第 \(i\) 次移动长度是 \(a_i\) ,求 \(g\) 函数解析式的各项系数,对 ...
- 2017 Multi-University Training Contest - Team 3 RXD and functions(NTT)
题解: 我是参考的 http://blog.csdn.net/qq_32570675/article/details/76571666 这一篇 orz 原来可以这么变换,涨姿势 代码: #includ ...
- HDU 6061 RXD and functions
题目链接:HDU-6061 题意:给定f(x),求f(x-A)各项系数. 思路:推导公式有如下结论: 然后用NTT解决即可. 代码: #include <set> #include < ...
- 【Tarjan】【LCA】【动态规划】【推导】hdu6065 RXD, tree and sequence
划分出来的每个区间的答案,其实就是连续两个的lca的最小值. 即5 2 3 4 这个区间的答案是min(dep(lca(5,2)),dep(lca(2,3),dep(lca(3,4)))). 于是dp ...
- hdu6061[NTT推公式] 2017多校3
/*hdu6061[NTT推公式] 2017多校3*/ #include <bits/stdc++.h> using namespace std; typedef long long LL ...
随机推荐
- 【洛谷 P3165】 [CQOI2014]排序机械臂 (Splay)
题目链接 debug了\(N\)天没debug出来,原来是找后继的时候没有pushdown... 众所周知,,Splay中每个编号对应的节点的值是永远不会变的,因为所有旋转.翻转操作改变的都是父节点和 ...
- jqgrid 翻页记录选中行
简单的jqgrid列表 $("#list").jqGrid({ url:contextPath + "/getList", postData: data, da ...
- csc_滤镜filter和实现透明的两种方式
有这样一个需求,给一个地图实现半透明效果. 使用css滤镜属性可以实现:filter. 下面是属性的所以值 filter: none | blur() | brightness() | contras ...
- 9.1docker容器 跨主机连接
open vswitch 实现跨主机容器连接 准备条件 将本地的网卡 与新建的网桥建立连接 配置 docker 启动项 weave实现跨主机容器连接 null
- 2017-2018-1 20179205《Linux内核原理与设计》第九周作业
<Linux内核原理与设计>第九周作业 视频学习及代码分析 一.进程调度时机与进程的切换 不同类型的进程有不同的调度需求,第一种分类:I/O-bound 会频繁的进程I/O,通常会花费很多 ...
- •搭建LAMP环境及快速部署双网站并实现基于域名的虚拟主机
本节所讲内容: 实战:搭建LAMP环境及快速部署双网站并实现基于域名的虚拟主机 LAMP架构:??? Linux+Apache+Mysql+PHP Linux+Apache+Mysql/MariaDB ...
- 一个无线通信类投稿的期刊list
转载一个,但是有些期刊的影响因子不是很对,要投的时候还是再到期刊主页上面看一看吧~ 期刊缩写 期刊全名 近年影响因子 P IEEE Proceedings Of The IEEE 3.686 IEEE ...
- python基础===open()文件处理使用介绍
本文转自:Python open()文件处理使用介绍 1. open()语法open(file[, mode[, buffering[, encoding[, errors[, newline[, c ...
- ==和equals()方法的区别
==和equals()方法的区别 这是一道经典的面试题,但是很多人对其一直很困惑,最近刚好复习了他们两者的区别,现总结如下: 一.==:两端可以存放不同的数据 1.放基本数据类型:根据基本数据 ...
- RabbitMQ 基础知识
1. 背景 RabbitMQ 是一个由 erlang 开发的AMQP 开源实现,erlang语言天生具备高并发的特性,而且他的管理界面用起来十分方便. 基础概念 讲解基础概念的前面,我们先来整体构造一 ...