https://blog.csdn.net/jinping_shi/article/details/52433975

https://blog.csdn.net/zouxy09/article/details/24971995

一、概括:

L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项。

二、区别:

  1.L1是模型各个参数的绝对值之和。

   L2是模型各个参数的平方和的开方值。

  2.L1会趋向于产生少量的特征,而其他的特征都是0.

    因为最优的参数值很大概率出现在坐标轴上,这样就会导致某一维的权重为0 ,产生稀疏权重矩阵

     L2会选择更多的特征,这些特征都会接近于0。

最优的参数值很小概率出现在坐标轴上,因此每一维的参数都不会是0。当最小化||w||时,就会使每一项趋近于0

三、再讨论几个问题

1.为什么参数越小代表模型越简单?

  越是复杂的模型,越是尝试对所有样本进行拟合,包括异常点。这就会造成在较小的区间中产生较大的波动,这个较大的波动也会反映在这个区间的导数比较大。

  只有越大的参数才可能产生较大的导数。因此参数越小,模型就越简单。

2.实现参数的稀疏有什么好处?

  因为参数的稀疏,在一定程度上实现了特征的选择。一般而言,大部分特征对模型是没有贡献的。这些没有用的特征虽然可以减少训练集上的误差,但是对测试集的样本,反而会产生干扰。稀疏参数的引入,可以将那些无用的特征的权重置为0.

3.L1范数和L2范数为什么可以避免过拟合?

  

  加入正则化项就是在原来目标函数的基础上加入了约束。当目标函数的等高线和L1,L2范数函数第一次相交时,得到最优解。

  L1范数:

  L1范数符合拉普拉斯分布,是不完全可微的。表现在图像上会有很多角出现。这些角和目标函数的接触机会远大于其他部分。就会造成最优值出现在坐标轴上,因此就会导致某一维的权重为0 ,产生稀疏权重矩阵,进而防止过拟合。

  L2范数:

  L2范数符合高斯分布,是完全可微的。和L1相比,图像上的棱角被圆滑了很多。一般最优值不会在坐标轴上出现。在最小化正则项时,可以是参数不断趋向于0.最后活的很小的参数。

  假设要求的参数为θθ,hθ(x)hθ(x)是我们的假设函数,那么线性回归的代价函数如下:

  

  那么在梯度下降法中,最终用于迭代计算参数θθ的迭代式为:

  

  如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:

  

  每一次迭代,θj都要先乘以一个小于1的因子,从而使得θj不断减小,因此总得来看,θ是不断减小的。

正则化项L1和L2的区别的更多相关文章

  1. 正则化项L1和L2

    本文从以下六个方面,详细阐述正则化L1和L2: 一. 正则化概述 二. 稀疏模型与特征选择 三. 正则化直观理解 四. 正则化参数选择 五. L1和L2正则化区别 六. 正则化问题讨论 一. 正则化概 ...

  2. 神经网络损失函数中的正则化项L1和L2

    神经网络中损失函数后一般会加一个额外的正则项L1或L2,也成为L1范数和L2范数.正则项可以看做是损失函数的惩罚项,用来对损失函数中的系数做一些限制. 正则化描述: L1正则化是指权值向量w中各个元素 ...

  3. 机器学习中正则化项L1和L2的直观理解

    正则化(Regularization) 概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. L0正则化 稀疏的参数可以防止 ...

  4. 深度学习(五)正则化之L1和L2

    监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差.最小化误差是为了让我们的模型 ...

  5. 正则化,L1,L2

    机器学习中在为了减小loss时可能会带来模型容量增加,即参数增加的情况,这会导致模型在训练集上表现良好,在测试集上效果不好,也就是出现了过拟合现象.为了减小这种现象带来的影响,采用正则化.正则化,在减 ...

  6. 机器学习中L1,L2正则化项

    搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...

  7. L1和L2:损失函数和正则化

    作为损失函数 L1范数损失函数 L1范数损失函数,也被称之为最小绝对值误差.总的来说,它把目标值$Y_i$与估计值$f(x_i)$的绝对差值的总和最小化. $$S=\sum_{i=1}^n|Y_i-f ...

  8. 机器学习中的L1、L2正则化

    目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L ...

  9. L1与L2损失函数和正则化的区别

    本文翻译自文章:Differences between L1 and L2 as Loss Function and Regularization,如有翻译不当之处,欢迎拍砖,谢谢~   在机器学习实 ...

随机推荐

  1. 调色盘canvas

    //调色盘 function draw8(id){ var canvas = document.getElementById(id); var context = canvas.getContext( ...

  2. Java架构搜集

    1. 2.

  3. centos6.5系统python2.6升级到python3.6

    1.安装必备的工具 wget:yum install wget gcc:yum install gcc zlib zlib-devel: yum install zlib zlib-devel -y ...

  4. javaEE中的spring配置笔记

    0 JavaEE的工程目录 0.1 WebContent     项目的主目录,在eclipse新建工程时可以自己命名,部署时会把该文件夹的内容发布到tomcat的webapps里. 该目录下可以建立 ...

  5. Python3.x:pyodbc连接Sybase数据库操作(Windows系统下DNS模式)

    Python3.x:pyodbc连接Sybase数据库操作(Windows系统下DNS模式) 一.安装模块pyodbc pip install pyodbc 二.配置odbc数据源 (1).windo ...

  6. centos/linux扩容Swap分区

    查看现在的swap容量 [root@node1 ~]# free -h total used free shared buff/cache available Mem: 15G 3.8G 2.1G 5 ...

  7. nswag vs swashbuckle

    https://www.reddit.com/r/dotnet/comments/a2181x/swashbuckle_vs_nswag/ Swashbuckle https://github.com ...

  8. js 执行跨域刷新页面

    主要代码: 注意这段代码 是子页面中添加的也就是弹出的那个页面刷新父页面 <script type="text/javascript"> function shuaxi ...

  9. pandas 选取数据 修改数据 loc iloc []

    pandas选取数据可以通过 loc iloc  [] 来选取 使用loc选取某几列: user_fans_df = sample_data.loc[:,['uid','fans_count']] 使 ...

  10. java8 日期处理

    这两周写业务逻辑,总会有各种日期操作,但是又记不住API,就是记不住API啊 这篇博客不错,记下来 https://lw900925.github.io/java/java8-newtime-api. ...