BZOJ2668 [cqoi2012]交换棋子 【费用流】
题目链接
题解
容易想到由\(S\)向初始的黑点连边,由终态的黑点向\(T\)连边,然后相邻的点间连边
但是这样满足不了交换次数的限制,也无法计算答案
考虑如何满足一个点的交换次数限制
当然是拆点
但是一个位置被经过时会被交换两次,而终点和起点都只交换了一次
那么我们就拆成三个点\(left\),\(mid\),\(right\),分别管理入,中介,出
它们之间顺次两边,费用为\(1\)
流量将限制\(lim\)拆开,当\(lim\)为奇数时要考虑给哪一边:
如果该点一开始是黑点,终态是白点,那么这个点出边一定比入边多
如果一开始是白点,终态是黑点,那么一定要入边多一点
否则一样多
有一些要注意的地方:
①要判黑白起始是否相同
②相邻不止是四个方向
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 2005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 1;
struct EDGE{int to,nxt,f,w;}ed[maxm];
inline void build(int u,int v,int f,int w){
ed[++ne] = (EDGE){v,h[u],f,w}; h[u] = ne;
ed[++ne] = (EDGE){u,h[v],0,-w}; h[v] = ne;
}
int d[maxn],minf[maxn],vis[maxn],p[maxn],S,T;
int q[maxn * 10],head,tail;
int mincost(){
int flow = 0,cost = 0,u;
while (true){
for (int i = S; i <= T; i++) vis[i] = 0,d[i] = minf[i] = INF;
d[S] = 0; q[head = tail = 0] = S;
while (head <= tail){
u = q[head++];
vis[u] = false;
Redge(u) if (ed[k].f && d[u] + ed[k].w < d[to = ed[k].to]){
d[to] = d[u] + ed[k].w; p[to] = k; minf[to] = min(ed[k].f,minf[u]);
if (!vis[to]) q[++tail] = to,vis[to] = true;
}
}
if (d[T] == INF) break;
flow += minf[T]; cost += d[T] * minf[T];
u = T;
while (u != S){
ed[p[u]].f -= minf[T];
ed[p[u] ^ 1].f += minf[T];
u = ed[p[u] ^ 1].to;
}
}
return cost;
}
char ss[22][22],st[22][22],lim[22][22];
int n,m,id[22][22],X[8] = {0,0,-1,1,-1,-1,1,1},Y[8] = {-1,1,0,0,-1,1,-1,1},cnta,cntb;
int main(){
n = read(); m = read();
REP(i,n) REP(j,m) id[i][j] = (i - 1) * m + j;
REP(i,n) scanf("%s",ss[i] + 1);
REP(i,n) scanf("%s",st[i] + 1);
REP(i,n) scanf("%s",lim[i] + 1);
int E = n * m,x,nx,ny; S = 0; T = 3 * E + 1;
REP(i,n) REP(j,m){
x = lim[i][j] - '0';
if (ss[i][j] == '1' && st[i][j] == '0'){
cnta++;
build(S,id[i][j],1,0);
build(id[i][j] + E,id[i][j],x / 2,1);
build(id[i][j],id[i][j] + 2 * E,(x + 1) / 2,1);
}
else if (ss[i][j] == '0' && st[i][j] == '1'){
cntb++;
build(id[i][j],T,1,0);
build(id[i][j] + E,id[i][j],(x + 1) / 2,1);
build(id[i][j],id[i][j] + 2 * E,x / 2,1);
}
else {
build(id[i][j] + E,id[i][j],x / 2,1);
build(id[i][j],id[i][j] + 2 * E,x / 2,1);
}
for (int k = 0; k < 8; k++){
nx = i + X[k];
ny = j + Y[k];
if (nx < 1 || ny < 1 || nx > n || ny > m) continue;
build(id[i][j] + 2 * E,id[nx][ny] + E,INF,0);
}
}
if (cnta != cntb) puts("-1");
else{
int ans = mincost();
Redge(S) if (ed[k].f){puts("-1"); return 0;}
printf("%d\n",ans / 2);
}
return 0;
}
BZOJ2668 [cqoi2012]交换棋子 【费用流】的更多相关文章
- BZOJ2668: [cqoi2012]交换棋子(费用流)
Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Input 第一行 ...
- 【BZOJ2668】[cqoi2012]交换棋子 费用流
[BZOJ2668][cqoi2012]交换棋子 Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列 ...
- [CQOI2012] 交换棋子 - 费用流
有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Solution 一个点拆三份,入点,主点 ...
- BZOJ.2668.[CQOI2012]交换棋子(费用流zkw)
题目链接 首先黑白棋子的交换等价于黑棋子在白格子图上移动,都到达指定位置. 在这假设我们知道这题用网络流做. 那么黑棋到指定位置就是一条路径,考虑怎么用流模拟出这条路径. 我们发现除了路径的起点和终点 ...
- BZOJ2668: [cqoi2012]交换棋子
题解: 可以戳这里:http://www.cnblogs.com/zig-zag/archive/2013/04/21/3033485.html 其实自己yy一下就知道这样建图的正确性了. 感觉太神奇 ...
- BZOJ2668:[CQOI2012]交换棋子(费用流)
题目描述 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. 输入输出格式 输入格式: 第一行 ...
- [CQOI2012][bzoj2668] 交换棋子 [费用流]
题面 传送门 思路 抖机灵 一开始看到这题我以为是棋盘模型-_-|| 然而现实是骨感的 后来我尝试使用插头dp来交换,然后又惨死 最后我不得不把目光转向那个总能化腐朽为神奇的算法:网络流 思维 我们要 ...
- 【BZOJ-2668】交换棋子 最小费用最大流
2668: [cqoi2012]交换棋子 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1055 Solved: 388[Submit][Status ...
- [cqoi2012]交换棋子
2668: [cqoi2012]交换棋子 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1334 Solved: 518[Submit][Stat ...
随机推荐
- Unity AssetBundle工作流
一.创建AssetBundle 1.在资源的Inspector视图下有一个AssetBundle的UI,第一个选项表示AssetBundle名称,第二个用于设置AssetBundle Variant, ...
- nginx支持php配置
location / { root /wwwroot/phptest; index index.html index.htm index.php; } location ~ \.(php|php5)$ ...
- Java开发工程师(Web方向) - 03.数据库开发 - 第2章.数据库连接池
第2章--数据库连接池 数据库连接池 一般而言,在实际开发中,往往不是直接使用JDBC访问后端数据库,而是使用数据库连接池的机制去管理数据库连接,来实现对后端数据库的访问. 建立Java应用程序到后端 ...
- 1208: [HNOI2004]宠物收养所
1208: [HNOI2004]宠物收养所 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 12030 Solved: 4916 Description ...
- Linux系统inotify工具安装配置
inotify主要功能 Inotify 是一个 Linux特性,它监控文件系统操作,比如读取.写入和创建.Inotify 反应灵敏,用法非常简单,并且比 cron 任务的繁忙轮询高效得多.学习如何将 ...
- 蓝牙核心技术概述(四):蓝牙协议规范(HCI、L2CAP、SDP、RFOCMM)(转载)
一.主机控制接口协议 HCI 蓝牙主机-主机控模型 蓝牙软件协议栈堆的数据传输过程: 1.蓝牙控制器接口数据分组:指令分组.事件分组.数据分组(1).指令分组 如:Accpet Connection ...
- Java中抽象类也能实例化
在Java中抽象类真的不能实例化么? 在学习的过程中,发现了一个问题,抽象类在没有实现所有的抽象方法前是不可以通过new来构建该对象的,但是抽象方法却是可以有自己的构造方法的.这样就把我搞糊涂了,既然 ...
- 计算器软件实现系列(五)策略模式+asp.net
一 策略模式代码的编写 using System; using System.Collections.Generic; using System.Linq; using System.Web; /// ...
- winform 删除,清空指定文件夹上的所有文件或文件夹
//递归删除文件夹及子文件C#代码: public void DeleteFolder(string dir) { if (Directory.Exists(dir)) //如果存在这个文件夹删除之 ...
- 实验吧密码学:RSAROLL
原题: {920139713,19} 704796792 752211152 274704164 18414022 368270835 483295235 263072905 459788476 48 ...