转:狄利克雷过程(dirichlet process )的五种理解
狄利克雷过程(dirichlet process )是目前变参数学习(non parameter)非常流行的一个理论,很多的工作都是基于这个理论来进行的,如HDP(hierarchical dirichlet process)。
下面我们谈谈dirichlet process的五种角度来理解它。
第一种:原始定义:假设存在在度量空间\Theta上的分布H和一个参数\alpha,如果对于度量空间\Theta的任意一个可数划分(可以是有限或者无限的)A1, A2,...,An,都有下列式子成立:
(G(A1),G(A2),...,G(An)) ~ Dir(\alpha H(A1), \alpha H(A2),..., \alpha H(An)), 这里Dir是dirichlet 分布,
我们称G是满足Dirichlet process的。
这个定义是1973年Ferguson最早提出的定义。在有了这个定义之后,我们怎么去构造一个dirichlet process(DP)出来呢?或者如果我们想从这个DP中抽取出一些样本,怎么抽呢?由于这个原因,我们有了下面三种构造性定义或者解释: 中国餐馆过程(CRP),polya urn ,stick-breaking。
第二种:中国餐馆过程(CRP)
假设一个中国餐馆有无限的桌子,第一个顾客到来之后坐在第一张桌子上。第二个顾客来到可以选择坐在第一张桌子上,也可以选择坐在一张新的桌子上,假设第n+1个顾客到来的时候,已经有k张桌子上有顾客了,分别坐了n1,n2,...,nk个顾客,那么第n+1个顾客可以以概率为ni/(\alpha+n)坐在第i张桌子上,ni为第i张桌子上的顾客数;同时有概率为\alpha/(\alpha+n)选取一张新的桌子坐下。那么在n个顾客坐定之后,很显然CRP把这n个顾客分为了K个堆,即K个clusters,可以证明CRP就是一个DP。
注意这里有一个限制,每张桌子上只能有同一个dish,即一桌人喜欢吃同一道菜。
第三种:Polya urn模型
假设我们有一个缸,里面没有球,现在我们从一个分布H中选取一种颜色,然后把这种颜色涂在一个球上放入缸中;然后我们要么从缸中抽取一个球出来,然后再放入两个和这个球同种颜色的球进入缸中;要么就从分布H中选取一个颜色,然后把这种颜色涂在一个球上放入缸中。从缸中抽取某种颜色的一个球的概率是ni/(\alpha+n),ni是这种颜色的球的个数,n是总的球个数;不从缸中抽取而放入一种颜色的球的概率是\alpha/(\alpha+n)。很明显,polya urn模型和CRP有一一对应的关系,颜色对应一个桌子,坐新桌子对应于不从缸中选取而是从H中选取一种颜色涂球放入缸中。
第四种:stick-breaking模型
假设有一个长度为1的线段,我们从中选取\pi_1长出来,剩下的部分再选取\pi_2出来,循环下去,\pi_n,无穷下去,这个有点类似我们古代的一句话:
“一尺之踵,日取其半,万世不竭”,它们满足\sum \pi_i = 1
对每个\pi_i,我们都从分布H中选取一个\theta_i,然后从F(\theta_i)中选取出一个x_i出来。这里的\theta_i就对应一个cluster,类似地,我们可以看到数据自然地被分为了各个堆,可以证明这个模型仍然是一个DP。
第五种:无限混合模型
从stick-breaking模型我们看出,我们可以把DP看着是一个无限混合模型,即
G ~ \sum_1^\inf \pi_i*F(\theta_i),其中\sum \pi_i = 1。\pi_i 就是混合模型中每个子模型的权重。
目前应用最多的还是从第五种角度来看待问题,即把DP看着是一个无限混合模型,其中值得注意的是:
1)虽然DP是一个无限混合模型,但是可以证明,随着数据的增多,模型的个数是呈现log 增加的,即模型的个数的增长是比数据的增长要缓慢得多的;
2)DP是有一个马太效应在里面的,即越富裕的人越来越富裕,我们可以从第二和第三种解释中看到,每个桌子或者颜色已经有的数据越多,那么下一次被选中的概率越大,因为是与在桌子上的个数成正比的。
DP是一个复杂的随机过程,需要进一步深入理解,下篇将会继续这个话题。
转:狄利克雷过程(dirichlet process )的五种理解的更多相关文章
- 说说基于网络的五种IO模型
# django不是一个异步框架 # tornado是异步的web框架 # 处理每秒大量的请求 # 个人理解的IO:就是应用层与内核驱动层的交互,这个过程无论从应用层到内核中,还是驱动层等待硬件层的数 ...
- 狄利克雷过程(Dirichlet Process)
0. 引入 现观察得到两个样本 θ1,θ2,来推测它们可能来自的分布: 假设来自于连续型概率密度函数, θ1,θ2∼H(θ) 则 θ1,θ2 相等的概率为 0,p(θ1=θ2)=0 概率为 0,不代表 ...
- Activity启动过程中获取组件宽高的五种方式
第一种:(重写Activity的onWindowFocusChanged方法) /** * 重写Acitivty的onWindowFocusChanged方法 */ @Override public ...
- 转:Simple Introduction to Dirichlet Process
来源:http://hi.baidu.com/vyfrcemnsnbgxyd/item/2f10ecc3fc35597dced4f88b Dirichlet Process(DP)是一个很重要的统计模 ...
- 聊聊 Linux 中的五种 IO 模型
本文转载自: http://mp.weixin.qq.com/s?__biz=MzAxODI5ODMwOA==&mid=2666538919&idx=1&sn=6013c451 ...
- 转:Windows Socket五种I/O模型
原文转自: Windows Socket五种I/O模型 Winsock 的I/O操作: 1. 两种I/O模式 阻塞模式:执行I/O操作完成前会一直进行等待,不会将控制权交给程序.套接字 默认为阻塞模 ...
- I/O模型系列之二:Unix的五种网络I/O模型
1. Unix的五种I/O模型 从上往下:阻塞程度(高-----低)I/O效率 (低-----高) 阻塞I/O(Blocking I/O):传统的IO模型 非阻塞I/O(Non-Blocking I ...
- I/O模型之一:Unix的五种I/O模型
目录: <I/O模型之一:Unix的五种I/O模型> <I/O模型之二:Linux IO模式及 select.poll.epoll详解> <I/O模型之三:两种高性能 I ...
- 04: 事件驱动、五种I/O操作、I/O多路复用select和epoll
网络编程其他篇 目录: 1.1 事件驱动 1.2 五种I/O操作 1.3 I/O 多路复用之select.poll.epoll详解 1.1 事件驱动返回顶部 1.什么是事件驱动 定义:就是根据不同事 ...
随机推荐
- 北京优步UBER司机B组最新奖励政策、高峰翻倍奖励、行程奖励、金牌司机奖励【每周更新】
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- POM中常用依赖包
<?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven ...
- ElasticSearch搜索引擎安装配置拼音插件pinyin
近几篇ElasticSearch系列: 1.阿里云服务器Linux系统安装配置ElasticSearch搜索引擎 2.Linux系统中ElasticSearch搜索引擎安装配置Head插件 3.Ela ...
- git基础(2)
三.查看提交历史日志查看·提交历史:git log 命令一个常用的选项是 -p,用来显示每次提交的内容差异. 你也可以加上 -2 来仅显示最近两次提交如果你想看到每次提交的简略的统计信息,你可以使用 ...
- 【input】输入框组件说明
input输入框组件 原型: <input value="[String]" type="[text | number | idcard | digit]" ...
- CSS3自定义字体
原文摘自:https://www.cnblogs.com/moqiutao/archive/2015/12/23/5070463.html 总节: 1) 定义字体标准格式: @font-face { ...
- leetcode合并区间
合并区间 给出一个区间的集合,请合并所有重叠的区间. 示例 1: 输入: [[1,3],[2,6],[8,10],[15,18]] 输出: [[1,6],[8,10],[15,18]] 解释: ...
- JDK源码分析:Short.java
Short是基本数据类型short的包装类. 1)声明部: public final class Short extends Number implements Comparable<Short ...
- wpa_supplicant上行接口浅析
摘自http://blog.csdn.net/fxfzz/article/details/6176414 wpa_supplicant提供的接口 从通信层次上划分, 上行接口:wpa_supplica ...
- zookeeper启动配置
zookeeper安装和配置详解 转载 2014年04月16日 14:36:31 16812 摘自:http://www.ibm.com/developerworks/cn/opensource/os ...