[CF1095F]Make It Connected
题目大意:给你$n(n\leqslant2\times10^5)$个点和$m(m\leqslant2\times10^5)$条边,第$i$个点点权为$a_i$。连接$u,v$两个点的代价为$a_u+a_v$或者一条连接$u,v$的边的边权。问连通的最小代价
题解:发现若不考虑特殊边,一定是点权最小的点连向其他点。于是建出由点权最小的点连向其他各点的边,边权为两点点权和。与特殊边一起跑最小生成树即可。
卡点:无
C++ Code:
#include <algorithm>
#include <cstdio>
#define maxn 200010
int n, m;
int l[maxn << 1], r[maxn << 1], rnk[maxn << 1];
long long ans, a[maxn], w[maxn << 1]; int f[maxn];
int find(int x) { return x == f[x] ? x : (f[x] = find(f[x])); } int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) {
scanf("%lld", a + i);
rnk[i] = f[i] = i;
}
std::sort(rnk + 1, rnk + n + 1, [] (int x, int y) { return a[x] < a[y]; });
const long long base = a[rnk[1]];
const int L = rnk[1];
for (int i = 1; i < n; ++i) {
w[i] = a[rnk[i + 1]] + base;
l[i] = L, r[i] = rnk[i + 1];
rnk[i] = i;
}
for (int i = n; i < n + m; ++i) {
scanf("%d%d%lld", l + i, r + i, w + i);
rnk[i] = i;
}
std::sort(rnk + 1, rnk + n + m, [] (int x, int y) { return w[x] < w[y]; });
int num = n - 1;
for (int i = 1, u, v; i < n + m && num; ++i) {
u = find(l[rnk[i]]), v = find(r[rnk[i]]);
if (u != v) {
f[u] = v;
ans += w[rnk[i]];
--num;
}
}
printf("%lld\n", ans);
return 0;
}
[CF1095F]Make It Connected的更多相关文章
- 【生成树,堆】【CF1095F】 Make It Connected
Description 给定 \(n\) 个点,每个点有点权,连结两个点花费的代价为两点的点权和.另外有 \(m\) 条特殊边,参数为 \(x,y,z\).意为如果你选择这条边,就可以花费 \(z\) ...
- 【CF1095F】 Make It Connected(最小生成树)
题目链接 如果没有特殊边的话显然答案就是权值最小的点向其他所有点连边. 所以把特殊边和权值最小的点向其他点连的边丢一起跑最小生成树就行了. #include <cstdio> #inclu ...
- 题解 CF1095F 【Make It Connected】
题意简述 \(n\)( \(1≤n≤2×10^5\) )个点,每个点 \(i\) 有一个点权 \(a_i\) ( \(1≤a_i≤2×10^{12}\) ),将两个点 \(i\),\(j\) 直接相连 ...
- F. Make It Connected 解析(思維、MST)
Codeforce 1095 F. Make It Connected 解析(思維.MST) 今天我們來看看CF1095F 題目連結 題目 給你\(n\)個點,每個點\(u\)還有一個值\(a[u]\ ...
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- PTA Strongly Connected Components
Write a program to find the strongly connected components in a digraph. Format of functions: void St ...
- poj 1737 Connected Graph
// poj 1737 Connected Graph // // 题目大意: // // 带标号的连通分量计数 // // 解题思路: // // 设f(n)为连通图的数量,g(n)为非连通图的数量 ...
- LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- Windows Phone 8 解锁提示IpOverUsbSvc问题——IpOverUsbEnum返回No connected partners found解决方案
我的1520之前总是无法解锁,提示:IpOverUsbSvc服务没有开启什么的. 根据网上网友的各种解决方案: 1. 把手机时间设置为当前时间,并且关闭“自动设置” 2. 确保手机接入了互联网 3.确 ...
随机推荐
- 模拟登陆百度以及Selenium 的基本用法
模拟登陆百度,需要依赖于selenium 模块,调用浏览器,执行python命令 先来说一下这个selenium模块啦...... 本文参考内容来自 Selenium官网 SeleniumPython ...
- Drupal 判断匿名用户必须先登录的解决方法
要实现如果是匿名用户点击checkout链接,要求先登录 方案一.通过添加Rules规则实现 EVENT:After adding a product to the cart Conditions : ...
- hdu1730Northcott Game(nim博弈)
Northcott Game Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- Python 发邮件例子
Python 发邮件例子 例子 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2019-04-23 16:12:33 # @Autho ...
- Python零基础入门必知
Python自学知识点总结 //2018.10.09 1. Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido ...
- lesson 22 by heart
lesson 22 by heart on end = continuously 连续不断地 know/learn sth by heart 记忆sth falter: speak hesitantl ...
- kubernetes相关
1.获取client , api-server 加token 或in-cluster方式 2.所有对象均有list update get 等方法 3.对象属性源码追踪,yaml与源码一一对应 4.一些 ...
- Paper Reading - CNN+CNN: Convolutional Decoders for Image Captioning
Link of the Paper: https://arxiv.org/abs/1805.09019 Innovations: The authors propose a CNN + CNN fra ...
- visionpro9.0破解
visionpro9.0软件下载 提供一个visionpro9.0视频教程学习网站:点击下面链接进入. ------------------------Halcon,Visionpro高清视频教程,点 ...
- canvas学习(三):文字渲染
一.绘制基本的文字: var canvas = document.getElementById("myCanvas") var ctx = canvas.getContext('2 ...