[CF1095F]Make It Connected
题目大意:给你$n(n\leqslant2\times10^5)$个点和$m(m\leqslant2\times10^5)$条边,第$i$个点点权为$a_i$。连接$u,v$两个点的代价为$a_u+a_v$或者一条连接$u,v$的边的边权。问连通的最小代价
题解:发现若不考虑特殊边,一定是点权最小的点连向其他点。于是建出由点权最小的点连向其他各点的边,边权为两点点权和。与特殊边一起跑最小生成树即可。
卡点:无
C++ Code:
#include <algorithm>
#include <cstdio>
#define maxn 200010
int n, m;
int l[maxn << 1], r[maxn << 1], rnk[maxn << 1];
long long ans, a[maxn], w[maxn << 1]; int f[maxn];
int find(int x) { return x == f[x] ? x : (f[x] = find(f[x])); } int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) {
scanf("%lld", a + i);
rnk[i] = f[i] = i;
}
std::sort(rnk + 1, rnk + n + 1, [] (int x, int y) { return a[x] < a[y]; });
const long long base = a[rnk[1]];
const int L = rnk[1];
for (int i = 1; i < n; ++i) {
w[i] = a[rnk[i + 1]] + base;
l[i] = L, r[i] = rnk[i + 1];
rnk[i] = i;
}
for (int i = n; i < n + m; ++i) {
scanf("%d%d%lld", l + i, r + i, w + i);
rnk[i] = i;
}
std::sort(rnk + 1, rnk + n + m, [] (int x, int y) { return w[x] < w[y]; });
int num = n - 1;
for (int i = 1, u, v; i < n + m && num; ++i) {
u = find(l[rnk[i]]), v = find(r[rnk[i]]);
if (u != v) {
f[u] = v;
ans += w[rnk[i]];
--num;
}
}
printf("%lld\n", ans);
return 0;
}
[CF1095F]Make It Connected的更多相关文章
- 【生成树,堆】【CF1095F】 Make It Connected
Description 给定 \(n\) 个点,每个点有点权,连结两个点花费的代价为两点的点权和.另外有 \(m\) 条特殊边,参数为 \(x,y,z\).意为如果你选择这条边,就可以花费 \(z\) ...
- 【CF1095F】 Make It Connected(最小生成树)
题目链接 如果没有特殊边的话显然答案就是权值最小的点向其他所有点连边. 所以把特殊边和权值最小的点向其他点连的边丢一起跑最小生成树就行了. #include <cstdio> #inclu ...
- 题解 CF1095F 【Make It Connected】
题意简述 \(n\)( \(1≤n≤2×10^5\) )个点,每个点 \(i\) 有一个点权 \(a_i\) ( \(1≤a_i≤2×10^{12}\) ),将两个点 \(i\),\(j\) 直接相连 ...
- F. Make It Connected 解析(思維、MST)
Codeforce 1095 F. Make It Connected 解析(思維.MST) 今天我們來看看CF1095F 題目連結 題目 給你\(n\)個點,每個點\(u\)還有一個值\(a[u]\ ...
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- PTA Strongly Connected Components
Write a program to find the strongly connected components in a digraph. Format of functions: void St ...
- poj 1737 Connected Graph
// poj 1737 Connected Graph // // 题目大意: // // 带标号的连通分量计数 // // 解题思路: // // 设f(n)为连通图的数量,g(n)为非连通图的数量 ...
- LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- Windows Phone 8 解锁提示IpOverUsbSvc问题——IpOverUsbEnum返回No connected partners found解决方案
我的1520之前总是无法解锁,提示:IpOverUsbSvc服务没有开启什么的. 根据网上网友的各种解决方案: 1. 把手机时间设置为当前时间,并且关闭“自动设置” 2. 确保手机接入了互联网 3.确 ...
随机推荐
- CF 810 D. Glad to see you!
codeforces 810 D. Glad to see you! http://codeforces.com/contest/810/problem/D 题意 大小为k的集合,元素的范围都在[1, ...
- 手写ORM第一版
ORM第一版: #Author = __rianley cheng__ #ORM 简易版 from mysql_ import Mysql class Fileld: def __init__(sel ...
- SSH项目中的困惑之一
1.request.getContextPath()详解 <%=request.getContextPath()%>是为了解决相对路径的问题,可返回站点的根路径. 但不用也可以,比如< ...
- Django - day00 第一个页面
Django - day00 0.写在最前面 第一次接触Django,是在大三的做数据库课程设计的时候,当时好像还是1.8的版本,现转眼就到了2.0的版本. 当时由于没太多的课,仅花了不到一周的时间就 ...
- java基础-Comparator接口与Collections实现排序算法
java 排序Comparable和Comparator使用 java提供了两个排序用的接口Comparable和Comparator,一般情况下使用区别如下: Comparable 接口用于类的固定 ...
- 【第三章】Shell 变量的数值计算
一.算数运算符 shell中常见的算术运算符: shell中常见的算术命令: 1. 整数运算 方法一:expr expr命令就既可以用于整数运算,也可以用于相关字符串长度.匹配等的运算处理: exp ...
- Nodejs Express笔记
Express做服务器,主要考虑到可能存在的高并发,js写起来也并不麻烦,环境搭建也异常简单.开车~ 由于主要目的就是用于生产环境,所以肯定不能用高版本的Nodejs,选LTS,没错的. 一.安装 这 ...
- LeetCode 141——环形链表
1. 题目 2. 解答 2.1 方法 1 定义快慢两个指针,慢指针每次前进一步,快指针每次前进两步,若链表有环,则快慢指针一定会相遇. /** * Definition for singly-link ...
- Servlet过滤器介绍之原理分析
zhangjunhd 的BLOG 写留言去学院学习发消息 加友情链接进家园 加好友 博客统计信息 51CTO博客之星 用户名:zhangjunhd 文章数:110 评论数:858 访问量:19 ...
- JQuery常用函数方法全集
Attribute: $("p").addClass(css中定义的样式类型); 给某个元素添加样式 $("img").attr({src:"test ...