https://www.lydsy.com/JudgeOnline/problem.php?id=4557

小R和B神正在玩一款游戏。这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的。换句话说,游戏的地图是一棵有N个节点的树。

游戏中有一种道具叫做侦查守卫,当一名玩家在一个点上放置侦查守卫后,它可以监视这个点以及与这个点的距离在D以内的所有点。这里两个点之间的距离定义为它们在树上的距离,也就是两个点之间唯一的简单路径上所经过边的条数。在一个点上放置侦查守卫需要付出一定的代价,在不同点放置守卫的代价可能不同。

现在小R知道了所有B神可能会出现的位置,请你计算监视所有这些位置的最小代价。

dp状态很好想,但是这个式子我菜我是真的推不出来,其他的巨佬切题的速度叹为观止,只能感叹我的智商摆在这里。

参考:https://www.luogu.org/blog/zcysky/solution-p3267

一眼是个树形dp,二眼$d$很小,可以直接做成一维状态,那么直接设$f[i][j]$为$i$子树从$i$往下$j$层都没有覆盖的代价,$g[i][j]$为$i$的子树全覆盖,往上还可以覆盖$j$层的代价。二者正好是互补的。

(PS:层数也包括i本身,换句话说,$j=0$时$i$并没有被覆盖,我在这里纠结了很久。)

(PPS:既然$g[i][j]$都可以覆盖上$j$层,那它也能覆盖下$j$层。)

之后对于dp式子慢慢剖析因为我自己都云里雾里的。

边界就是当点$u$为关键点时$f[u][0]=g[u][0]=w[u]$这个点一定是要放一个的,如果不是的话显然我们就不需要放了,初值为0。

初始化就不说了。

对于每个儿子结点v,我们有:

$g[u][j]=min(g[u][j]+f[v][j],g[v][j+1]+f[u][j+1])$(所以明白f和g是互补的才能看懂)

当然也有可能出现这种的:$g[u][j]=min(g[u][j],g[u][j+1])$

推完g来推f,首先$f[u][0]=g[u][0]$因为此时二者状态等价。

然后显然的,$f[u][j]+=f[v][j-1]$

以及也有可能出现这种的:$f[u][j]=min(f[u][j],f[u][j-1])$

(所以其实核心还是在状态含义上而非式子,含义搞懂式子就很显然了。)

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=5e5+;
const int D=;
const int INF=1e9;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt;
}e[N*];
int n,d,m,cnt,head[N],w[N];
int f[N][D],g[N][D];
bool im[N];
inline void add(int u,int v){
e[++cnt].to=v;e[cnt].nxt=head[u];head[u]=cnt;
}
void dfs(int u,int fa){
if(im[u])f[u][]=g[u][]=w[u];
for(int i=;i<=d;i++)g[u][i]=w[u];
g[u][d+]=INF;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==fa)continue;
dfs(v,u);
for(int j=d;j>=;j--)g[u][j]=min(g[u][j]+f[v][j],g[v][j+]+f[u][j+]);
for(int j=d;j>=;j--)g[u][j]=min(g[u][j],g[u][j+]);
f[u][]=g[u][];
for(int j=;j<=d+;j++)f[u][j]+=f[v][j-];
for(int j=;j<=d+;j++)f[u][j]=min(f[u][j],f[u][j-]);
}
}
int main(){
n=read(),d=read();
for(int i=;i<=n;i++)w[i]=read();
m=read();
for(int i=;i<=m;i++)im[read()]=;
for(int i=;i<n;i++){
int u=read(),v=read();
add(u,v);add(v,u);
}
dfs(,);
printf("%d\n",f[][]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4557:[JLOI2016/SHOI2016]侦察守卫——题解的更多相关文章

  1. P3267 [JLOI2016/SHOI2016]侦察守卫

    $ \color{#0066ff}{ 题目描述 }$ 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地图是一棵有N个节点的 ...

  2. 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)

    题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...

  3. 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)

    洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...

  4. Luogu3267 [JLOI2016/SHOI2016]侦察守卫 (树形DP)

    树形DP,一脸蒙蔽.看了题解才发现它转移状态与方程真不愧神题! \(f[x][y]\)表示\(x\)的\(y\)层以下的所有点都已经覆盖完,还需要覆盖上面的\(y\)层的最小代价. \(g[x][y] ...

  5. [JLOI2016/SHOI2016]侦察守卫(树形dp)

    小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地图是一棵有N个节点的树. 游戏中有一种道具叫做侦查守卫,当一名玩家在一个点 ...

  6. [JLOI2016/SHOI2016]侦察守卫

    嘟嘟嘟 这道题可以说是[HNOI2003]消防局的设立的升级版.距离从2改为了d. 辛亏d只有20,这也就是一个切入点. 令f[u][j]表示u四周 j - 1的距离需要被覆盖,g[u][j]表示u可 ...

  7. Luogu 3267 [JLOI2016/SHOI2016]侦察守卫

    以后要记得复习鸭 BZOJ 4557 大佬的博客 状态十分好想,设$f_{x, i}$表示以覆盖完$x$为根的子树后还能向上覆盖$i$层的最小代价,$g_{x, i}$表示以$x$为根的子树下深度为$ ...

  8. BZOJ4557 JLoi2016 侦察守卫 【树形DP】*

    BZOJ4557 JLoi2016 侦察守卫 Description 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地图是 ...

  9. [BZOJ4557][JLOI2016]侦察守卫(树形DP)

    首先可以确定是树形DP,但这里存在跨子树的信息传递问题,这里就需要“借”的思想. f[i][j]表示i子树内所有点都被覆盖到,且i以外j层内的点都能被覆盖到 的方案数. g[i][j]表示i子树内离i ...

随机推荐

  1. selenium元素定位(三)

    使用selenium就不可避免的要提到界面元素定位,通过元素定位来实现一系列的逻辑操作. selenium提供了8中元素定位的方式: id.name.class name.tag name.link ...

  2. Jenkis 无法下载插件问题解决

    在新机器上安装jenkins后,安装插件报如下错误 sun.security.provider.certpath.SunCertPathBuilderException: unable to find ...

  3. Java开发工程师(Web方向) - 03.数据库开发 - 第3章.SQL注入与防范

    第3章--SQL注入与防范 SQL注入与防范 经常遇到的问题:数据安全问题,尤其是sql注入导致的数据库的安全漏洞 国内著名漏洞曝光平台:WooYun.org 数据库泄露的风险:用户信息.交易信息的泄 ...

  4. Docker: 如何修改 Docker 的镜像存储位置

    我用的阿里云的服务器, 但是系统盘只有20G, 默认 Docker 的镜像文件是安装在/var/lib 目录下的, 这样的话我根本装不了太多的镜像... 这个必须得改改... 搜了下, 解决方案如下: ...

  5. [C++] OOP - Access Control and Class Scope

    Access Control And Inheritance Protected Member Like private, protected members are unaccessible to ...

  6. Python中package的导入语法

    在Python中,一个目录被称为一个package.import和from语法除了导入module文件之外,还可以导入package,语法如下: # import语法 import dir1.dir2 ...

  7. Delegate(QLabel和QComboBox)

    一.最终效果 二.实现思路 1.createEditor()中create两个控件,分别是QLabel和QComboBox,将其添加到一个widget中,然后返回该widget: 2.setEdito ...

  8. hexo设置permalink-避免url中出现中文

    hexo博客初始化的url是年月日+题目:year/:month/:day/:title/,这样的url不便与分享,中文会乱吗,而且一旦修改了题目(我相信大部分人的题目都是中文)就会导致之前分享的ur ...

  9. 最多水容器(M)

    题目 给定n个非负整数a 1,a 2,...,a n,其中每个代表坐标(i,a i)处的一个点.绘制n条垂直线,使得线i的两个端点处于(i,a i)和(i,0)处.找到两条线,它们与x轴一起形成一个容 ...

  10. TCP系列30—窗口管理&流控—4、Cork算法

    一.Cork算法概述 Cork算法与Nagle算法类似,也有人把Cork算法称呼为super-Nagle.Nagle算法提出的背景是网络因为大量小包小包而导致利用率低下产生网络拥塞,网络发生拥塞的时候 ...