https://www.lydsy.com/JudgeOnline/problem.php?id=4557

小R和B神正在玩一款游戏。这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的。换句话说,游戏的地图是一棵有N个节点的树。

游戏中有一种道具叫做侦查守卫,当一名玩家在一个点上放置侦查守卫后,它可以监视这个点以及与这个点的距离在D以内的所有点。这里两个点之间的距离定义为它们在树上的距离,也就是两个点之间唯一的简单路径上所经过边的条数。在一个点上放置侦查守卫需要付出一定的代价,在不同点放置守卫的代价可能不同。

现在小R知道了所有B神可能会出现的位置,请你计算监视所有这些位置的最小代价。

dp状态很好想,但是这个式子我菜我是真的推不出来,其他的巨佬切题的速度叹为观止,只能感叹我的智商摆在这里。

参考:https://www.luogu.org/blog/zcysky/solution-p3267

一眼是个树形dp,二眼$d$很小,可以直接做成一维状态,那么直接设$f[i][j]$为$i$子树从$i$往下$j$层都没有覆盖的代价,$g[i][j]$为$i$的子树全覆盖,往上还可以覆盖$j$层的代价。二者正好是互补的。

(PS:层数也包括i本身,换句话说,$j=0$时$i$并没有被覆盖,我在这里纠结了很久。)

(PPS:既然$g[i][j]$都可以覆盖上$j$层,那它也能覆盖下$j$层。)

之后对于dp式子慢慢剖析因为我自己都云里雾里的。

边界就是当点$u$为关键点时$f[u][0]=g[u][0]=w[u]$这个点一定是要放一个的,如果不是的话显然我们就不需要放了,初值为0。

初始化就不说了。

对于每个儿子结点v,我们有:

$g[u][j]=min(g[u][j]+f[v][j],g[v][j+1]+f[u][j+1])$(所以明白f和g是互补的才能看懂)

当然也有可能出现这种的:$g[u][j]=min(g[u][j],g[u][j+1])$

推完g来推f,首先$f[u][0]=g[u][0]$因为此时二者状态等价。

然后显然的,$f[u][j]+=f[v][j-1]$

以及也有可能出现这种的:$f[u][j]=min(f[u][j],f[u][j-1])$

(所以其实核心还是在状态含义上而非式子,含义搞懂式子就很显然了。)

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=5e5+;
const int D=;
const int INF=1e9;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt;
}e[N*];
int n,d,m,cnt,head[N],w[N];
int f[N][D],g[N][D];
bool im[N];
inline void add(int u,int v){
e[++cnt].to=v;e[cnt].nxt=head[u];head[u]=cnt;
}
void dfs(int u,int fa){
if(im[u])f[u][]=g[u][]=w[u];
for(int i=;i<=d;i++)g[u][i]=w[u];
g[u][d+]=INF;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==fa)continue;
dfs(v,u);
for(int j=d;j>=;j--)g[u][j]=min(g[u][j]+f[v][j],g[v][j+]+f[u][j+]);
for(int j=d;j>=;j--)g[u][j]=min(g[u][j],g[u][j+]);
f[u][]=g[u][];
for(int j=;j<=d+;j++)f[u][j]+=f[v][j-];
for(int j=;j<=d+;j++)f[u][j]=min(f[u][j],f[u][j-]);
}
}
int main(){
n=read(),d=read();
for(int i=;i<=n;i++)w[i]=read();
m=read();
for(int i=;i<=m;i++)im[read()]=;
for(int i=;i<n;i++){
int u=read(),v=read();
add(u,v);add(v,u);
}
dfs(,);
printf("%d\n",f[][]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4557:[JLOI2016/SHOI2016]侦察守卫——题解的更多相关文章

  1. P3267 [JLOI2016/SHOI2016]侦察守卫

    $ \color{#0066ff}{ 题目描述 }$ 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地图是一棵有N个节点的 ...

  2. 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)

    题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...

  3. 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)

    洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...

  4. Luogu3267 [JLOI2016/SHOI2016]侦察守卫 (树形DP)

    树形DP,一脸蒙蔽.看了题解才发现它转移状态与方程真不愧神题! \(f[x][y]\)表示\(x\)的\(y\)层以下的所有点都已经覆盖完,还需要覆盖上面的\(y\)层的最小代价. \(g[x][y] ...

  5. [JLOI2016/SHOI2016]侦察守卫(树形dp)

    小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地图是一棵有N个节点的树. 游戏中有一种道具叫做侦查守卫,当一名玩家在一个点 ...

  6. [JLOI2016/SHOI2016]侦察守卫

    嘟嘟嘟 这道题可以说是[HNOI2003]消防局的设立的升级版.距离从2改为了d. 辛亏d只有20,这也就是一个切入点. 令f[u][j]表示u四周 j - 1的距离需要被覆盖,g[u][j]表示u可 ...

  7. Luogu 3267 [JLOI2016/SHOI2016]侦察守卫

    以后要记得复习鸭 BZOJ 4557 大佬的博客 状态十分好想,设$f_{x, i}$表示以覆盖完$x$为根的子树后还能向上覆盖$i$层的最小代价,$g_{x, i}$表示以$x$为根的子树下深度为$ ...

  8. BZOJ4557 JLoi2016 侦察守卫 【树形DP】*

    BZOJ4557 JLoi2016 侦察守卫 Description 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地图是 ...

  9. [BZOJ4557][JLOI2016]侦察守卫(树形DP)

    首先可以确定是树形DP,但这里存在跨子树的信息传递问题,这里就需要“借”的思想. f[i][j]表示i子树内所有点都被覆盖到,且i以外j层内的点都能被覆盖到 的方案数. g[i][j]表示i子树内离i ...

随机推荐

  1. 网易七鱼 Android 高性能日志写入方案

    本文来自网易云社区 作者:网易七鱼 Android 开发团队 前言 网易七鱼作为一款企业级智能客服系统,对于系统稳定性要求很高,不过难保用户在使用中不会出现问题,而 Android SDK 安装在用户 ...

  2. 【button】 按钮组件说明

    原型: <button size="[default | mini]" type="[primary | default | warn]" plain=& ...

  3. 【CSV数据文件】

    文件参数化设置方法

  4. @meida 媒体查询

    示例 @meida 媒体查询 在进行书写的时候需要考虑到加载顺序和样式权重使用meida响应式实现不同宽度布局示例 常用工具 https://mydevice.io 参考链接 https://deve ...

  5. 完全背包问题 :背包dp

    题目描述: 有 N种物品和一个容量是 V 的背包,每种物品都有无限件可用.第 i 种物品的体积是 vi,价值是 wi. 求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大.输出最 ...

  6. Matlab提速方法

    1. 向量化. 尽量少用for循环. 2. 循环竖着走比横着走快. 3. 内置函数也有优化的空间 不少内置函数都有大量的error check.直接用profiler找出真正干活的.不少内置函数在网上 ...

  7. DataSet转化为DataTable

    . DataTable dt = ds.Tables[]; . DataTable dt = dao.FillTables("GetOptions_DKI_City_HCPName" ...

  8. 基础数据类型-dict

    字典Dictinary是一种无序可变容器,字典中键与值之间用“:”分隔,而与另一个键值对之间用","分隔,整个字典包含在{}内: dict1 = {key1:value1, key ...

  9. str和repr

    在Python2.6和Python3.0以及更早的版本中,在交互式模式下的输出本质上是使用repr,因此对于一些浮点数运算,会显示很多位: 4 / 5.0 #0.8000000000000004 但是 ...

  10. Rescue(BFS时间最短 另开数组或优先队列)

    Angel was caught by the MOLIGPY! He was put in prison by Moligpy. The prison is described as a N * M ...