CodeForces - 894E Ralph and Mushrooms (强连通缩点+dp)
题意:一张有向图,每条边上都有wi个蘑菇,第i次经过这条边能够采到w-(i-1)*i/2个蘑菇,直到它为0。问最多能在这张图上采多少个蘑菇。
分析:在一个强连通分量内,边可以无限次地走直到该连通块内蘑菇被采完为止,因此每个强连通分量内的结果是确定的。
设一条边权值为w,最大走过次数为t,解一元二次方程得 t = (int)(1+sqrt(1+8w));则该边对所在连通块的贡献为w*t - (t-1)*t*(t+1)/6。
而不在任何一个强连通分量内的边,最多只能走一次。所以在缩点后的DAG上进行dp即可。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn =1e6+;
struct Edge{
int v,next;
LL val;
}edges[maxn],E[maxn];
int head[maxn],tot,H[maxn],tt;
stack<int> S;
int pre[maxn],low[maxn],sccno[maxn],dfn,scc_cnt;
LL W[maxn];
LL dp[maxn];
void init()
{
tot = dfn = scc_cnt=tt=;
memset(H,-,sizeof(H));
memset(W,,sizeof(W));
memset(dp,,sizeof(dp));
memset(pre,,sizeof(pre));
memset(sccno,,sizeof(sccno));
memset(head,-,sizeof(head));
} void AddEdge(int u,int v,LL val) {
edges[tot] = (Edge){v,head[u],val};
head[u] = tot++;
} void Tarjan(int u)
{
int v;
pre[u]=low[u]=++dfn;
S.push(u);
for(int i=head[u];~i;i=edges[i].next){
v= edges[i].v;
if(!pre[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(!sccno[v]){
low[u]=min(low[u],pre[v]);
}
}
if(pre[u]==low[u]){
int x;
++scc_cnt;
for(;;){
x = S.top();S.pop();
sccno[x]=scc_cnt;
if(x==u)break;
}
}
} void nAddEdge(int u,int v,LL w)
{
E[tt] = (Edge){v,H[u],w};
H[u] = tt++;
} LL dfs(int u)
{
if(dp[u]) return dp[u];
for(int i=H[u];~i;i=E[i].next){
int v = E[i].v;
dp[u] = max(dp[u],dfs(v)+E[i].val);
}
dp[u]+=W[u];
return dp[u];
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int N,M;
while(scanf("%d%d",&N,&M)==){
init();
int st,u,v; LL w;
while(M--){
scanf("%d%d%lld",&u,&v,&w);
AddEdge(u,v,w);
}
scanf("%d",&st);
for(int i=;i<=N;++i){
if(!pre[i]){
Tarjan(i);
}
} for(int u =;u<=N;++u){
for(int i =head[u];~i;i = edges[i].next){
v = edges[i].v;
LL w = edges[i].val;
if(sccno[u]!=sccno[v]){
nAddEdge(sccno[u],sccno[v],w);
}
else{
int t = (int)(+sqrt(+*w))/;
W[sccno[u]] += (LL)t*w - (LL)(t-)*t*(t+)/;
}
}
}
for(int i=;i<=scc_cnt;++i){
if(!dp[i]){
dfs(i);
}
}
printf("%lld\n",dp[sccno[st]]);
}
return ;
}
CodeForces - 894E Ralph and Mushrooms (强连通缩点+dp)的更多相关文章
- 【Codeforces】894E.Ralph and Mushrooms Tarjan缩点+DP
题意 给定$n$个点$m$条边有向图及边权$w$,第$i$次经过一条边边权为$w-1-2.-..-i$,$w\ge 0$给定起点$s$问从起点出发最多能够得到权和,某条边可重复经过 有向图能够重复经过 ...
- UVA11324 The Largest Clique (强连通缩点+DP最长路)
<题目链接> 题目大意: 给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行). ...
- ZOJ 3795 Grouping (强连通缩点+DP最长路)
<题目链接> 题目大意: n个人,m条关系,每条关系a >= b,说明a,b之间是可比较的,如果还有b >= c,则说明b,c之间,a,c之间都是可以比较的.问至少需要多少个集 ...
- UVA - 11324 The Largest Clique (强连通缩点+dp)
题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...
- Gym - 101170B British Menu (强连通缩点+dp)
题意:求一个有向图上的最长路(每个强连通分量的点不超过5个) 首先对强连通分量缩点,暴力预处理出len[k][i][j]表示第k个强连通分量里的第i个点和第j个点之间的最长路径,设状态(k,i,f)表 ...
- Codeforces 1137C Museums Tour (强连通分量, DP)
题意和思路看这篇博客就行了:https://www.cnblogs.com/cjyyb/p/10507937.html 有个问题需要注意:对于每个scc,只需要考虑进入这个scc的时间即可,其实和从哪 ...
- Codeforces 894.E Ralph and Mushrooms
E. Ralph and Mushrooms time limit per test 2.5 seconds memory limit per test 512 megabytes input sta ...
- Codeforces B. Mouse Hunt(强连通分解缩点)
题目描述: Mouse Hunt time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- 【题解】CF894E Ralph and Mushrooms (缩点)
[题解]CF894E Ralph and Mushrooms (缩点) 这是紫?给个解方程算法 考虑一条边若可以重复遍历说明一定有环,有环的话一定会把环上的蘑菇榨干,考虑一条边从全部到榨干的贡献是多少 ...
随机推荐
- 什么是 end-to-end 神经网络?——知乎解答
什么是 end-to-end 神经网络? https://www.zhihu.com/question/51435499 解答1 张旭 像机器一样学习,像人一样生活 YJango 等 端到端指的是 ...
- 第二百二十三节,jQuery EasyUI,ComboBox(下拉列表框)组件
jQuery EasyUI,ComboBox(下拉列表框)组件,可以远程加载数据的下拉列表组件 学习要点: 1.加载方式 2.属性列表 3.事件列表 4.方法列表 本节课重点了解 EasyUI 中 C ...
- <! - - ... - -> 注解
<A HREF TARGET> 指定超连结的分割视窗 <A HREF=#锚的名称> 指定锚名称的超连结 <A HREF> 指定超连结 <A NAME=锚的名称 ...
- 【BZOJ】3016: [Usaco2012 Nov]Clumsy Cows(贪心)
http://www.lydsy.com/JudgeOnline/problem.php?id=3016 之前yy了一个贪心,,,但是错了,,就是枚举前后对应的字符(前面第i个和后面第i个)然后相同答 ...
- python uwsgi 部署以及优化
这篇文章其实两个月之前就应该面世了,但是最近琐事.烦心事太多就一直懒得动笔,拖到现在才写 一.uwsgi.wsgi.fastcgi区别和联系 参见之前的文章 http://www.cnblogs.co ...
- @RequestMapping 注解
@RequestMapping 注解开发者需要在控制器内部为每一个请求动作开发相应的处理方法.org.springframework.web.bind.annotation.RequestMappin ...
- Android去掉标题的方法
我们写程序的时候经常要全屏显示或者不显示标题.比如我们做地图导航的时候就不要标题了,下面介绍三种方法来实现Android去掉标题. 第一种:也一般入门的时候经常使用的一种方法 在setContentV ...
- windows下caffe如何单独编译proto文件
利用protoc.exe即可编译. 在protoc.exe当前文件夹下打开cmd,输入命令如下: pushd %~dp0 echo "copying .proto and generated ...
- md5 算法类 java
package com.sunyard.p2p.util; import java.security.MessageDigest; import java.security.NoSuchAlgorit ...
- ssh访问跳过RSA key"yes/no"验证
通常我们再批量配置多台机器的时候经常出现通过ssh批量登录机器提示 RSA key fingerprint is ::a6:b1:c9:d7:b8::c1:::8e:f5::2b:8b. Are yo ...