题意:一张有向图,每条边上都有wi个蘑菇,第i次经过这条边能够采到w-(i-1)*i/2个蘑菇,直到它为0。问最多能在这张图上采多少个蘑菇。

分析:在一个强连通分量内,边可以无限次地走直到该连通块内蘑菇被采完为止,因此每个强连通分量内的结果是确定的。

设一条边权值为w,最大走过次数为t,解一元二次方程得 t = (int)(1+sqrt(1+8w));则该边对所在连通块的贡献为w*t - (t-1)*t*(t+1)/6。

而不在任何一个强连通分量内的边,最多只能走一次。所以在缩点后的DAG上进行dp即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn =1e6+;
struct Edge{
int v,next;
LL val;
}edges[maxn],E[maxn];
int head[maxn],tot,H[maxn],tt;
stack<int> S;
int pre[maxn],low[maxn],sccno[maxn],dfn,scc_cnt;
LL W[maxn];
LL dp[maxn];
void init()
{
tot = dfn = scc_cnt=tt=;
memset(H,-,sizeof(H));
memset(W,,sizeof(W));
memset(dp,,sizeof(dp));
memset(pre,,sizeof(pre));
memset(sccno,,sizeof(sccno));
memset(head,-,sizeof(head));
} void AddEdge(int u,int v,LL val) {
edges[tot] = (Edge){v,head[u],val};
head[u] = tot++;
} void Tarjan(int u)
{
int v;
pre[u]=low[u]=++dfn;
S.push(u);
for(int i=head[u];~i;i=edges[i].next){
v= edges[i].v;
if(!pre[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(!sccno[v]){
low[u]=min(low[u],pre[v]);
}
}
if(pre[u]==low[u]){
int x;
++scc_cnt;
for(;;){
x = S.top();S.pop();
sccno[x]=scc_cnt;
if(x==u)break;
}
}
} void nAddEdge(int u,int v,LL w)
{
E[tt] = (Edge){v,H[u],w};
H[u] = tt++;
} LL dfs(int u)
{
if(dp[u]) return dp[u];
for(int i=H[u];~i;i=E[i].next){
int v = E[i].v;
dp[u] = max(dp[u],dfs(v)+E[i].val);
}
dp[u]+=W[u];
return dp[u];
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int N,M;
while(scanf("%d%d",&N,&M)==){
init();
int st,u,v; LL w;
while(M--){
scanf("%d%d%lld",&u,&v,&w);
AddEdge(u,v,w);
}
scanf("%d",&st);
for(int i=;i<=N;++i){
if(!pre[i]){
Tarjan(i);
}
} for(int u =;u<=N;++u){
for(int i =head[u];~i;i = edges[i].next){
v = edges[i].v;
LL w = edges[i].val;
if(sccno[u]!=sccno[v]){
nAddEdge(sccno[u],sccno[v],w);
}
else{
int t = (int)(+sqrt(+*w))/;
W[sccno[u]] += (LL)t*w - (LL)(t-)*t*(t+)/;
}
}
}
for(int i=;i<=scc_cnt;++i){
if(!dp[i]){
dfs(i);
}
}
printf("%lld\n",dp[sccno[st]]);
}
return ;
}

CodeForces - 894E Ralph and Mushrooms (强连通缩点+dp)的更多相关文章

  1. 【Codeforces】894E.Ralph and Mushrooms Tarjan缩点+DP

    题意 给定$n$个点$m$条边有向图及边权$w$,第$i$次经过一条边边权为$w-1-2.-..-i$,$w\ge 0$给定起点$s$问从起点出发最多能够得到权和,某条边可重复经过 有向图能够重复经过 ...

  2. UVA11324 The Largest Clique (强连通缩点+DP最长路)

    <题目链接> 题目大意: 给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行). ...

  3. ZOJ 3795 Grouping (强连通缩点+DP最长路)

    <题目链接> 题目大意: n个人,m条关系,每条关系a >= b,说明a,b之间是可比较的,如果还有b >= c,则说明b,c之间,a,c之间都是可以比较的.问至少需要多少个集 ...

  4. UVA - 11324 The Largest Clique (强连通缩点+dp)

    题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...

  5. Gym - 101170B British Menu (强连通缩点+dp)

    题意:求一个有向图上的最长路(每个强连通分量的点不超过5个) 首先对强连通分量缩点,暴力预处理出len[k][i][j]表示第k个强连通分量里的第i个点和第j个点之间的最长路径,设状态(k,i,f)表 ...

  6. Codeforces 1137C Museums Tour (强连通分量, DP)

    题意和思路看这篇博客就行了:https://www.cnblogs.com/cjyyb/p/10507937.html 有个问题需要注意:对于每个scc,只需要考虑进入这个scc的时间即可,其实和从哪 ...

  7. Codeforces 894.E Ralph and Mushrooms

    E. Ralph and Mushrooms time limit per test 2.5 seconds memory limit per test 512 megabytes input sta ...

  8. Codeforces B. Mouse Hunt(强连通分解缩点)

    题目描述: Mouse Hunt time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  9. 【题解】CF894E Ralph and Mushrooms (缩点)

    [题解]CF894E Ralph and Mushrooms (缩点) 这是紫?给个解方程算法 考虑一条边若可以重复遍历说明一定有环,有环的话一定会把环上的蘑菇榨干,考虑一条边从全部到榨干的贡献是多少 ...

随机推荐

  1. SecureCRT超级终端使用说明

    SecureCRT超级终端使用说明 一.连接POS机 1.运行SecureCRT,选择‘文件’菜单,在下拉菜单中选择‘快速连接’菜单: 2.在弹出的对话框中按如下图选择参数: 3.POS端开机,且数据 ...

  2. smartJS 0.1 API 讲解 - FlowController

    本篇介绍0.1版中最后一个特性,FlowController:同时也对第一版总结一下,因为近两年全部都是在搞前端,都是做一些js框架类的东西,也做了不少有意思的功能,做smartjs对我来说一个是对自 ...

  3. 蓝桥杯 第四届C/C++预赛真题(1) 高斯日记(数学题,年份处理)

    题目标题: 高斯日记 大数学家高斯有个好习惯:无论如何都要记日记. 他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210 后来人们知道,那个整数就是日期,它表示那一天是高斯 ...

  4. JVM难学?那是因为你没认真看完这篇文章(转)

    一:虚拟机内存图解 JAVA程序运行与虚拟机之上,运行时需要内存空间.虚拟机执行JAVA程序的过程中会把它管理的内存划分为不同的数据区域方便管理. 虚拟机管理内存数据区域划分如下图: 数据区域分类: ...

  5. Array转为Json需要导入的包

    今天自己写了一个JSON的例子,可以一调用就出了问题,报下面这个异常: java.lang.ClassNotFoundException: org.apache.commons.lang.except ...

  6. 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈

    [BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...

  7. [LintCode] 第k大元素

    基于快速排序: class Solution { public: /* * param k : description of k * param nums : description of array ...

  8. Dart SDK在Linux上的下载及配置

    Dart SDK在Linux上的下载及配置 首先建议想要学习Dart的小伙伴选择Linux开发环境比较好,具体原因就不多说了.如果想要尝试在Window或Mac上安装Dart SDK的话可以参考Ins ...

  9. matplotlib绘制圆饼图

    import matplotlib.pyplot as plt labels = ['Nokia','Samsung','Apple','Lumia'] values = [10,30,45,15] ...

  10. 巨蟒python全栈开发-第14天 内置函数2 递归 二分查找

    一.今日内容总览 1.内置函数补充 repr() 显示出字符串的官方表示形式 chr() arscii码中的字,转换成位置 ord() arscii码中的位置,转换成字2.递归 自己调用自己 两个口: ...