bzoj 4069 [Apio2015]巴厘岛的雕塑 dp
[Apio2015]巴厘岛的雕塑
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 494 Solved: 238
[Submit][Status][Discuss]
Description
Input
输入的第一行包含三个用空格分开的整数 N,A,B。
Output
输出一行一个数,表示最小的最终优美度。
Sample Input
8 1 2 1 5 4
Sample Output
explanation
将这些雕塑分为 2 组,(8,1,2) 和 (1,5,4),它们的和是 (11) 和 (10),最终优美度是 (11 OR 10)=11。(不难验证,这也是最终优美度的最小值。)
HINT
子任务 1 (9 分)
这道题目其实比较坑的,我以为是xor然后做了好久,
发现是or,然后无语了,这道题的话从高往低贪心是没问题的。
那么可以在外层枚举,f[i][j]表示前i个数,分成了j段,可不可以的,存储的是一个bool变量,
然后从前面,转移,前面已经决策出的ans必须不影响,就是决策当前位的时候不能影响前面的位
置。一个比较简单的写法,后面的位置可以默认是1这样直接or判断一下是否不变即可,因为后面怎么样是
没关系的。这样是n^3logn的,前面三个点可以过。
最后一个点A为1,那么第二维可以去掉,g[i]表示i个数分成的最小组数,因为越少越好,然后比较方式是一样的。
#include<cstring>
#include<cmath>
#include<iostream>
#include<cstdio>
#include<algorithm> #define N 107
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,A,B;
int g[N*];
bool f[N][N];
ll ans,sum[N*],a[N*]; void solve_Subtask1()
{
ll x=sum[n],wei=;
while (x) wei++,x>>=;ans=,wei--;
for (;~wei;wei--)
{
ll res=(1ll<<wei)-+ans;
memset(f,,sizeof(f));f[][]=true;
for (int i=;i<=n;i++)
for (int j=;j<=min(i,B);j++)
for (int k=j-;k<=i-;k++)
f[i][j]|=f[k][j-]&&((res|(sum[i]-sum[k]))==res);
bool boo=false;
for (int i=A;i<=B;i++)
boo|=f[n][i];
if (!boo) ans+=(1ll<<wei);
}
printf("%lld\n",ans);
}
void solve_Subtask2()
{
ll x=sum[n],wei=;
while (x) wei++,x>>=;ans=,wei--;
for (;~wei;wei--)
{
ll res=(1ll<<wei)-+ans;
memset(g,0x7f,sizeof(g));g[]=;
for (int i=;i<=n;i++)
for (int j=;j<=i-;j++)
if ((res|(sum[i]-sum[j]))==res) g[i]=min(g[i],g[j]+);
int boo=false;
if (g[n]<=B) boo=true;
if (!boo) ans+=(ll)(1ll<<wei);
}
printf("%lld\n",ans);
}
#undef ll
#undef N
int main()
{
freopen("fzy.in","r",stdin);
freopen("fzy.out","w",stdout); n=read(),A=read(),B=read();
for (int i=;i<=n;i++) a[i]=read(),sum[i]=a[i]+sum[i-];
if (A==) solve_Subtask2();
else solve_Subtask1();
}
bzoj 4069 [Apio2015]巴厘岛的雕塑 dp的更多相关文章
- bzoj 4069: [Apio2015]巴厘岛的雕塑【dp】
居然要对不同的数据写不同的dp= = 首先记得开long long,<<的时候要写成1ll<<bt 根据or的性质,总体思路是从大到小枚举答案的每一位,看是否能为0. 首先对于 ...
- BZOJ 4069 [Apio2015]巴厘岛的雕塑 ——贪心
自己首先想了一种方法$f(i)$表示前$i$个最小值为多少. 然而发现位运算并不满足局部最优性. 然后我们可以从高到低贪心的判断,使得每一组的和在一个特定的范围之内. 还要特判最后一个Subtask, ...
- 4069: [Apio2015]巴厘岛的雕塑
Description 印尼巴厘岛的公路上有许多的雕塑,我们来关注它的一条主干道. 在这条主干道上一共有 N 座雕塑,为方便起见,我们把这些雕塑从 1 到 N 连续地进行标号,其中第 i 座雕塑的年龄 ...
- bzoj千题计划239:bzoj4069: [Apio2015]巴厘岛的雕塑
http://www.lydsy.com/JudgeOnline/problem.php?id=4069 a!=1: 从高位到低位一位一位的算 记录下哪些位必须为0 dp[i][j] 表示前i个数分为 ...
- 【BZOJ4069】[Apio2015]巴厘岛的雕塑 按位贪心+DP
[BZOJ4069][Apio2015]巴厘岛的雕塑 Description 印尼巴厘岛的公路上有许多的雕塑,我们来关注它的一条主干道. 在这条主干道上一共有 N 座雕塑,为方便起见,我们把这些雕塑从 ...
- [APIO2015]巴厘岛的雕塑 --- 贪心 + 枚举
[APIO2015]巴厘岛的雕塑 题目描述 印尼巴厘岛的公路上有许多的雕塑,我们来关注它的一条主干道. 在这条主干道上一共有\(N\)座雕塑,为方便起见,我们把这些雕塑从 1 到\(N\)连续地进行 ...
- [APIO2015]巴厘岛的雕塑 贪心+DP+特殊数据优化
写了好久.... 刚刚调了一个小时各种对拍,,,,最后发现是多写了一个等号,,,,内心拒绝 表示一开始看真的是各种懵逼啊 在偷听到某位大佬说的从高位开始贪心后发现可做 首先考虑小数据(因为可以乱搞) ...
- [APIO2015]巴厘岛的雕塑[按位贪心+dp]
题意 给你长度为 \(n\) 的序列,要求分成 \(k\) 段连续非空的区间,求所有区间和的 \(or\) 最小值. 分析 定义 \(f_{i,j}\) 表示前 \(i\) 个点分成 \(j\) 段的 ...
- 洛谷P3646 [APIO2015]巴厘岛的雕塑(数位dp)
传送门 话说莫非所有位运算都可以用贪心解决么……太珂怕啦…… 一直把或运算看成异或算我傻逼…… 考虑从高位到低位贪心,如果能使答案第$i$位为0那么肯定比不为$0$更优 然后考虑第$i$位是否能为$0 ...
随机推荐
- 交换学生 (Foreign Exchange,UVa10763)
题目描述: 解题思路: 开一个数组,读入一次交换两个数,如果最后数组不变,即符合匹配 #include<iostream> #include<cstdio> #include& ...
- 解析范式(1NF-4NF)
亲爱的盆友们~又是新的一年,你,准备好新的学习计划了吗~?是读书100本,还是考上5个证?嘛~不管怎么说,角落里那一堆蒙尘的计划表好像在昭示着这仍然是一个充满朝气又艰难的9102年呢!总之,先把#技本 ...
- Python3 Tkinter-Toplevel
1.创建 Toplevel与Frame类似,但是它包含窗体属性(如Title) from tkinter import * root=Tk() tl=Toplevel() Label(tl,text= ...
- “Hello World!团队”Alpha发布—视频链接+文案+美工
视频链接:http://v.youku.com/v_show/id_XMzEyNjc2MTAyOA==.html?sharefrom=iphone&sharekey=5378037f8b710 ...
- 学霸系统PipeLine功能规格说明书
学霸系统PipeLine功能规格说明书共分为以下三部分: 1.产品面向用户群体 2.用户使用说明 3.产品功能具体实现 1.产品面向用户群体 我们这组的项目并不是传统意义上能发布并进行展示的项目,因此 ...
- JavaScript初探系列之String的基本操作
1.字符串转换 字符串转换是最基础的要求和工作,你可以将任何类型的数据都转换为字符串,你可以用下面三种方法的任何一种: var myStr = num.toString(); // "19& ...
- Alpha 冲刺报告(4/10)
Alpha 冲刺报告(4/10) 队名:洛基小队 峻雄(组长) 已完成:继续行动脚本的编写 明日计划:尽量完成角色的移动 剩余任务:物品背包交互代码 困难:具体编码进展比较缓慢 ----------- ...
- TCP系列14—重传—4、Karn算法和TSOPT的RTTM
一.Karn算法 在RTT采样测量过程中,如果一个数据包初传后,RTO超时重传,接着收到这个数据包的ACK报文,那么这个ACK报文是对应初传TCP报文还是对应重传TCP报文呢?这个问题就是retran ...
- Spring Boot(五)启动流程分析
学习过springboot的都知道,在Springboot的main入口函数中调用SpringApplication.run(DemoApplication.class,args)函数便可以启用Spr ...
- MenuStrip的自动显示
/// <summary> /// 主界面接受F11时,显示菜单 /// 通过改写Form的ProcessCmdKey实现 /// </summary> /// <par ...