LightOJ 1278 - Sum of Consecutive Integers 分解奇因子 + 思维
http://www.lightoj.com/volume_showproblem.php?problem=1278
题意:问一个数n能表示成几种连续整数相加的形式 如6=1+2+3,1种。
思路:先列式子\(N=a+(a+1)+(a+2)+ ...+(a+k-1)=\frac{k·(2a+k-1)}{2} \) 继续化成\(2a-1=\frac{2N}{k} - k \) 可由左式得知,2a-1必为奇数,那么右式必定是一奇一偶,且都为2N的因子。所以只要分解因子记录个数,最后组合求一下即可。
/** @Date : 2016-11-24-22.15
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
//#include<bits/stdc++.h>
#define LL long long
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e6+20;
int pri[670000];
int c = 0;
bool vis[N*10]; void prime()
{
MMF(vis);
for(int i = 2; i < N*10; i++)
{
if(!vis[i])
pri[c++] = i;
for(int j = 0; j < c && i * pri[j] < N*10; j++)
{
vis[i*pri[j]] = 1;
if(i % pri[j] == 0)
break;
}
}
} int main()
{
int T;
int cnt = 0;
cin >> T;
prime();
while(T--)
{
LL n;
scanf("%lld", &n);
LL ans = 1;
//while(n % 2 == 0)
// n/=2;
for(int i = 0; i < c && pri[i]*pri[i] <= n; i++)//记录素因子为奇数的(除2外的)
{
LL ct = 0;
while(n % pri[i] == 0)
{
if(i != 0)
ct++;
n /= pri[i];
}
ans *= (ct + 1);
}
if(n > 1 && n != 2)
{
ans *= 2;
}
printf("Case %d: %lld\n", ++cnt, ans-1);
}
return 0;
}
LightOJ 1278 - Sum of Consecutive Integers 分解奇因子 + 思维的更多相关文章
- LightOj 1278 - Sum of Consecutive Integers(求奇因子的个数)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1278 题意:给你一个数n(n<=10^14),然后问n能用几个连续的数表示; 例 ...
- Sum of Consecutive Integers
Sum of Consecutive Integers 题目链接 题意 问N能够分解成多少种不同的连续数的和. 思路 连续数是一个等差数列:$$ \frac{(2a1 + n -1)n}{2} = T ...
- Sum of Consecutive Integers LightOJ - 1278(推公式 数学思维)
原文地址:https://blog.csdn.net/qq_37632935/article/details/79465213 给你一个数n(n<=10^14),然后问n能用几个连续的数表示; ...
- poj 2379 Sum of Consecutive Prime Numbers
...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- POJ 2739 Sum of Consecutive Prime Numbers(尺取法)
题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Description S ...
- ACM:POJ 2739 Sum of Consecutive Prime Numbers-素数打表-尺取法
POJ 2739 Sum of Consecutive Prime Numbers Time Limit:1000MS Memory Limit:65536KB 64bit IO Fo ...
- POJ2739 Sum of Consecutive Prime Numbers 2017-05-31 09:33 47人阅读 评论(0) 收藏
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 25225 ...
- Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers http://poj.org/problem?id=2739 Time Limit: 1000MS Memory Limit: 6 ...
随机推荐
- 自动对象&局部静态对象
一.关键点 对象的生命周期:程序执行过程中,该对象存在的那段时间 局部对象:形参.函数体内部定义的变量 二.自动对象 自动对象:只存在于块执行期间的对象 包括:局部变量.形参 三.局部静态对象 特点: ...
- 20145214实验二 Java面向对象程序设计
20145214实验二 Java面向对象程序设计 初步掌握单元测试和TDD 三种代码 伪代码 `百分制转五分制:` `如果成绩小于60,转成"不及格"` `如果成绩在60与70之间 ...
- iOS- 显示数据列表最常用的一个控件UITableView
相信做过iOS的程序员,最熟悉的控件一定少不了UITableView,最常用的控件也一定少不了UITableView! 今天分享一下自己对UITableView的实现大体思路,和整理出来的学习笔记! ...
- 3DMAX2016安装教程【图文】
下载安装包之后,双击setup.exe. 下面是安装图片教程: 点击安装 点击下一步. 如图输入序列号和产品密钥. 填写安装路径,然后下一步. 开始安装,等待. 安装成功.
- C# lamda表达式
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- springMVC视图有哪些?-009
html,json,pdf等. springMVC 使用ViewResolver来根据controller中返回的view名关联到具体的view对象. 使用view对象渲染返回值以生成最终的视图,比如 ...
- 线程同步(使用了synchronized)和线程通讯(使用了wait,notify)
线程同步 什么是线程同步? 当使用多个线程来访问同一个数据时,非常容易出现线程安全问题(比如多个线程都在操作同一数据导致数据不一致),所以我们用同步机制来解决这些问题. 实现同步机制有两个方法:1.同 ...
- vue 开发多页应用
vue 开发多页应用 https://www.cnblogs.com/fengyuqing/p/vue_cli_webpack.html https://segmentfault.com/a/1190 ...
- BZOJ 1597 土地购买(斜率优化DP)
如果有一块土地的长和宽都小于另一块土地的长和宽,显然这块土地属于“赠送土地”. 我们可以排序一下将这些赠送土地全部忽略掉,一定不会影响到答案. 那么剩下的土地就是长递减,宽递增的.令dp[i]表示购买 ...
- BZOJ4310 跳蚤(后缀数组+二分答案)
注意到答案一定是原串的子串,于是考虑造出SA,二分答案是第几小的子串.第k小子串很容易在SA上求出.之后计算使他成为最大子串至少要在几个位置切割,对每个字典序比答案大的后缀,找到所有合法切割位置(求l ...