LightOJ 1278 - Sum of Consecutive Integers 分解奇因子 + 思维
http://www.lightoj.com/volume_showproblem.php?problem=1278
题意:问一个数n能表示成几种连续整数相加的形式 如6=1+2+3,1种。
思路:先列式子\(N=a+(a+1)+(a+2)+ ...+(a+k-1)=\frac{k·(2a+k-1)}{2} \) 继续化成\(2a-1=\frac{2N}{k} - k \) 可由左式得知,2a-1必为奇数,那么右式必定是一奇一偶,且都为2N的因子。所以只要分解因子记录个数,最后组合求一下即可。
/** @Date : 2016-11-24-22.15
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
//#include<bits/stdc++.h>
#define LL long long
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e6+20;
int pri[670000];
int c = 0;
bool vis[N*10]; void prime()
{
MMF(vis);
for(int i = 2; i < N*10; i++)
{
if(!vis[i])
pri[c++] = i;
for(int j = 0; j < c && i * pri[j] < N*10; j++)
{
vis[i*pri[j]] = 1;
if(i % pri[j] == 0)
break;
}
}
} int main()
{
int T;
int cnt = 0;
cin >> T;
prime();
while(T--)
{
LL n;
scanf("%lld", &n);
LL ans = 1;
//while(n % 2 == 0)
// n/=2;
for(int i = 0; i < c && pri[i]*pri[i] <= n; i++)//记录素因子为奇数的(除2外的)
{
LL ct = 0;
while(n % pri[i] == 0)
{
if(i != 0)
ct++;
n /= pri[i];
}
ans *= (ct + 1);
}
if(n > 1 && n != 2)
{
ans *= 2;
}
printf("Case %d: %lld\n", ++cnt, ans-1);
}
return 0;
}
LightOJ 1278 - Sum of Consecutive Integers 分解奇因子 + 思维的更多相关文章
- LightOj 1278 - Sum of Consecutive Integers(求奇因子的个数)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1278 题意:给你一个数n(n<=10^14),然后问n能用几个连续的数表示; 例 ...
- Sum of Consecutive Integers
Sum of Consecutive Integers 题目链接 题意 问N能够分解成多少种不同的连续数的和. 思路 连续数是一个等差数列:$$ \frac{(2a1 + n -1)n}{2} = T ...
- Sum of Consecutive Integers LightOJ - 1278(推公式 数学思维)
原文地址:https://blog.csdn.net/qq_37632935/article/details/79465213 给你一个数n(n<=10^14),然后问n能用几个连续的数表示; ...
- poj 2379 Sum of Consecutive Prime Numbers
...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- POJ 2739 Sum of Consecutive Prime Numbers(尺取法)
题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Description S ...
- ACM:POJ 2739 Sum of Consecutive Prime Numbers-素数打表-尺取法
POJ 2739 Sum of Consecutive Prime Numbers Time Limit:1000MS Memory Limit:65536KB 64bit IO Fo ...
- POJ2739 Sum of Consecutive Prime Numbers 2017-05-31 09:33 47人阅读 评论(0) 收藏
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 25225 ...
- Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers http://poj.org/problem?id=2739 Time Limit: 1000MS Memory Limit: 6 ...
随机推荐
- 索引值迭代-enumerate
你想在迭代一个序列的同时跟踪正在被处理的元素索引?内置的enumerate() 函数可以很好的解决这个问题: list_c = ['a', 'b', 'c'] for i, c in enumerat ...
- com技术学习
百度百科概念 COM是微软公司为了计算机工业的软件生产更加符合人类的行为方式开发的一种新的软件开发技术.在COM构架下,人们可以开发出各种各样的功能专一的组件,然后将它们按照需要组合起来,构成复杂的应 ...
- java实现几种简单的排序算法
public class SimpleAri { public static void main(String[] args) { int[] t = {11, 21, 22, 1, 6, 10, 3 ...
- DNS域名解析协议
一. 根域 就是所谓的“.”,其实我们的网址www.baidu.com在配置当中应该是www.baidu.com.(最后有一点),一般我们在浏览器里输入时会省略后面的点,而这也已经成为了习惯. 根域服 ...
- caffe2安装教程
相比于网上的安装教程不如直接看官方安装教程:https://caffe2.ai/docs/getting-started.html?platform=windows&configuration ...
- pycharm/webstorm创建react项目
1.安装nodejs 2.安装reactapp依赖:npm install -g create-react-app 在pycharm/webstorm中选择react
- CSS设计指南之一 HTML标记与文档结构
HTML标记与文档结构 之所以从HTML讲起,是因为CSS的用途就是为HTML标记添加样式. 1.1 HTML标记基础 对于每个包含内容的元素,根据它所包含的内容是不是文本,有两种不同的方式给它们加标 ...
- Android OCR文字识别 实时扫描手机号(极速扫描单行文本方案)
身份证识别:https://github.com/wenchaosong/OCR_identify 遇到一个需求,要用手机扫描纸质面单,获取面单上的手机号,最后决定用tesseract这个开源OCR库 ...
- 第23天:js-数据类型转换
一.padding1.内边距会影响盒子大小2.行内元素,尽量不用上下的padding和margin3.块元素嵌套块元素.子级会继承父级的宽度,高度由内容决定.如果给子级再设置padding,不会影响盒 ...
- 获取接口参数名带有“abc”的参数的值
public IMethodReturn Invoke(IMethodInvocation input, GetNextInterceptionBehaviorDelegate getNext) va ...