BZOJ-1879 Bill的挑战 状态压缩DP
MD....怎么又是状压.......
1879: [Sdoi2009]Bill的挑战
Time Limit: 4 Sec Memory Limit: 64 MB
Submit: 537 Solved: 280
[Submit][Status][Discuss]
Description
Input
本题包含多组数据。 第一行:一个整数T,表示数据的个数。 对于每组数据: 第一行:两个整数,N和K(含义如题目表述)。 接下来N行:每行一个字符串。
Output
1
2 1
a?
?b
Sample Input
50
Sample Output
对于30%的数据,T ≤ 5,M ≤ 5,字符串长度≤ 20;
对于70%的数据,T ≤ 5,M ≤ 13,字符串长度≤ 30;
对于100%的数据,T ≤ 5,M ≤ 15,字符串长度≤ 50。
HINT
Source
Day2
一看数据范围,50?感觉不能状压啊...哦,M<=15.....
思路比较简单:
f【i】【j】表示 匹配到第i位,时状态为j的方案数;
具体的转移:
f[i+1][j&(g[i][l])]+=f[i][j],f[i+1][j&(g[i][l])]%=p;
用g来存储状态,枚举状态即可;
PS:当天晚上调了20多分钟没调完....被YveH神犇叫去颓废了,Carry了他一盘后睡觉去了...第二天调完1A辣
code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
#define p 1000003
int t,n,k;
char s[20][60];
int f[60][1<<15],g[60][1<<5];
void DP()
{
memset(f,0,sizeof(f)); memset(g,0,sizeof(g));
int len=strlen(s[1]);
for (int i=0; i<len; i++)
for (int j=1; j<=n; j++)
for (int l=0; l<26; l++)
if (s[j][i]=='?' || s[j][i]=='a'+l)
g[i][l]|=1<<(j-1);
f[0][(1<<n)-1]=1;
for (int i=0; i<len; i++)
for (int j=0; j<(1<<n); j++)
if (f[i][j]!=0)
for (int l=0; l<26; l++)
f[i+1][j&(g[i][l])]+=f[i][j],f[i+1][j&(g[i][l])]%=p;
int ans=0;
for (int i=0; i<(1<<n); i++)
{
int now=i,tmp=0;
while (now) tmp+=now&1,now>>=1;
if (tmp==k) ans=(ans+f[len][i])%p;
}
printf("%d\n",ans);
}
int main()
{
t=read();
while (t--)
{
n=read(),k=read();
for (int i=1; i<=n; i++)
scanf("%s",s[i]);
DP();
}
return 0;
}
BZOJ-1879 Bill的挑战 状态压缩DP的更多相关文章
- BZOJ 1087 互不侵犯King 状态压缩DP
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1087 题目大意; 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国 ...
- BZOJ 1072: [SCOI2007]排列perm 状态压缩DP
1072: [SCOI2007]排列perm Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为 ...
- BZOJ 1087状态压缩DP
状态压缩DP真心不会写,参考了别人的写法. 先预处理出合理状态, 我们用二进制表示可以放棋子的状态,DP[I][J][K]:表示现在处理到第I行,J:表示第I行的状态,K表示现在为止一共放的棋子数量. ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
随机推荐
- 第2章 面向对象的设计原则(SOLID):6_开闭原则
6. 开闭原则(Open Closed Principle,OCP) 6.1 定义 (1)一个类应该对扩展开放,对修改关闭.要求通过扩展来实现变化,而且是在不修改己有的代码情况下进行扩展,也不必改动己 ...
- VS 扩展推荐
Visual Studio 工欲善其事,必先利器.本着这样的观念,对于经常使用的工具,我喜欢去研究研究,帮助我提高效率. Visual Studio Microsoft Visual Studio(简 ...
- 25个实用的jquery技巧
1. 去除页面的右键菜单 $(document).ready(function(){ $(document).bind(“contextmenu”,function(e){returnfalse; ...
- 后台首页品字形(frameset)框架搭建
get_defined_constants([true])//显示所有常量信息.参数true,表示分组显示,查看当前系统给我提供了哪些常量可以使用,包括自定义常量. __CONTROLLER__//获 ...
- 大话redis/memcache缓存
通常情况下,随着业务量增加,对后端数据库的访问压力也会随之加大.当数据库访问压力渐渐增大时,除了升级数据库配置提高数据库本身的抗压能力外,我们也可以采用在应用服务器与数据库服务器之间架设数据库缓存服务 ...
- 18Mybatis_动态sql_foreach
foreach: 向sql传递数组或List,mybatis使用foreach解析 应用场景: 在用户查询列表和查询总数的statement中增加多个id输入查询. sql语句如下: 两种方法: SE ...
- nginx log的json格式:
nginx log的json格式: 为了elk便于统计: yum安装nginx: log_format json '{"@timestamp": "$time_iso86 ...
- C# is as
if(obj is ClassA) //遍历类层次,看OBJ是不是ClassA类型{ ClassA a=(ClassA) obj; //遍历类层次,看obj能否转换为ClassA,不成功则抛出异 ...
- 淘宝账号基于OAuth2.0的登录验证授权登陆第三方网站
首先得有一个注册的appkey和App Secret 该流程分三个步骤: 第一步:通过用户授权获取授权码Code: 第二步:用上一步获取的Code和应用密钥(AppSecret)通过Https P ...
- jdbc 得到表结构、主键
jdbc 得到表结构.主键 标签: jdbctablenullschema数据库mysql 2012-02-16 22:13 11889人阅读 评论(0) 收藏 举报 分类: Java(71) 假 ...