传递闭包

在一个有向(无向)连通图中,如果节点i与k联通,k与j联通,则i和j联通,传递闭包就是把所有传递性的节点求出来,之后就知道了任意两个节点的连通性,只需枚举节点的联通情况即可,无需考虑最短路径:
代码:
memset(dis,-1,sizeof(dis));
for(k=1;k<=n;k++)
{
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(g[i][k]&&g[k][j])
g[i][j]=1;
}
}
}

XYZZY
Time
Limit:
 1000MS
  Memory Limit: 30000K
Total Submissions: 3344   Accepted: 963

Description

The prototypical computer adventure game, first designed by Will Crowther on the PDP-10 in the mid-1970s as an attempt at computer-refereed fantasy gaming, and expanded into a puzzle-oriented game by Don Woods at Stanford in 1976. (Woods had been one of the authors of INTERCAL.) Now better known as Adventure or Colossal Cave Adventure, but the TOPS-10 operating system permitted only six-letter filenames in uppercase. See also vadding, Zork, and Infocom. It has recently been discovered how to run open-source software on the Y-Crate gaming device. A number of enterprising designers have developed Advent-style games for deployment on the Y-Crate. Your job is to test a number of these designs to see which are winnable. Each game consists of a set of up to 100 rooms. One of the rooms is the start and one of the rooms is the finish. Each room has an energy value between -100 and +100. One-way doorways interconnect pairs of rooms. The player begins in the start room with 100 energy points. She may pass through any doorway that connects the room she is in to another room, thus entering the other room. The energy value of this room is added to the player's energy. This process continues until she wins by entering the finish room or dies by running out of energy (or quits in frustration). During her adventure the player may enter the same room several times, receiving its energy each time. 

Input

The input consists of several test cases. Each test case begins with n, the number of rooms. The rooms are numbered from 1 (the start room) to n (the finish room). Input for the n rooms follows. The input for each room consists of one or more lines containing: 
  • the energy value for room i
  • the number of doorways leaving room i
  • a list of the rooms that are reachable by the doorways leaving room i

The start and finish rooms will always have enery level 0. A line containing -1 follows the last test case.

Output

In one line for each case, output "winnable" if it is possible for the player to win, otherwise output "hopeless".

Sample Input

5
0 1 2
-60 1 3
-60 1 4
20 1 5
0 0
5
0 1 2
20 1 3
-60 1 4
-60 1 5
0 0
5
0 1 2
21 1 3
-60 1 4
-60 1 5
0 0
5
0 1 2
20 2 1 3
-60 1 4
-60 1 5
0 0
-1

Sample Output

hopeless
hopeless
winnable
winnable

题意:给出一个单向连通图,和每个节点的能量,代表走到这个节点就可以获得,初始化能量为100,当到达某个节点后能量<=0则 不能继续走,问从1开始能不能到达n

分析:首先用floyd检验图的连通性即1能否到达n,若不能直接输出hopeless,如果1可以到达n,但是由于能量限制可能走不到n,如果从1可以到达一个正环(可以不断转圈获得能量)而且正环的点可以到达n,这种情况也是winnable,所以用bellman-Foyd判断正环,且正环上的点可以到达n,注意当到达某点的时候能量为非正,则不能从此点继续下去
#include"stdio.h"
#include"string.h"
#include"stdlib.h"
#include"queue"
#include"algorithm"
#include"string.h"
#include"string"
#include"math.h"
#include"vector"
#include"stack"
#include"map"
#define eps 1e-8
#define inf 0x3f3f3f3f
#define M 111
using namespace std;
int dis[M],g[M][M],energy[M],mp[M][M];
int main()
{
int n,i,j,k,m;
while(scanf("%d",&n),n!=-1)
{
memset(g,0,sizeof(g));
memset(dis,-1,sizeof(dis));
memset(mp,0,sizeof(mp));
for(i=1;i<=n;i++)
{
scanf("%d%d",&energy[i],&m);
while(m--)
{
scanf("%d",&j);
g[i][j]=1;
mp[i][j]=1;
}
}
for(k=1;k<=n;k++)
{
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(g[i][k]&&g[k][j])
g[i][j]=1;
}
}
}
if(g[1][n]==0)
{
printf("hopeless\n");
continue;
}
dis[1]=100;
g[n][n]=1;//注意该连通性会用到
for(k=1;k<=n;k++)
{
int flag=1;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(mp[i][j]&&g[j][n]&&dis[j]<dis[i]+energy[j]&&dis[i]>0)
{
flag=0;
dis[j]=dis[i]+energy[j];
}
}
}
if(flag)
break;
}
if(k>n||dis[n]>=0)//如果存在1可以到达正环而正环可以到n或者1可以直接到n就是可以的
{
printf("winnable\n");
}
else
printf("hopeless\n");
}
}

传递闭包(Floyd+bellman-Fold POJ1932)的更多相关文章

  1. PKU 1932 XYZZY(Floyd+Bellman||Spfa+Floyd)

    题目大意:原题链接 给你一张图,初始你在房间1,初始生命值为100,进入每个房间会加上那个房间的生命(可能为负),问是否能到达房间n.(要求进入每个房间后生命值都大于0) 解题思路: 解法一:Floy ...

  2. poj1860(Bellman—fold)

    题目连接:http://poj.org/problem?id=1860 Description Several currency exchange points are working in our ...

  3. Treasure Exploration---poj2594(传递闭包Floyd+最小路径覆盖)

    题目链接:http://poj.org/problem?id=2594 在外星上有n个点需要机器人去探险,有m条单向路径.问至少需要几个机器人才能遍历完所有的点,一个点可以被多个机器人经过(这就是和单 ...

  4. POJ3660 传递闭包———floyd算法

    POJ3660 Cow Contest 题目链接:http://poj.org/problem?id=3660 题意:农名约翰有些奶牛,约翰通过让他们决斗来决定他们的排名,约翰让这些奶牛一对一打完一定 ...

  5. POJ 3660 Cow Contest 传递闭包+Floyd

    原题链接:http://poj.org/problem?id=3660 Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  6. 图论算法——最短路径Dijkstra,Floyd,Bellman Ford

    算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...

  7. [bzoj2208][Jsoi2010]连通数_bitset_传递闭包floyd

    连通数 bzoj-2208 Jsoi-2010 题目大意:给定一个n个节点的有向图,问每个节点可以到达的点的个数和. 注释:$1\le n\le 2000$. 想法:网上有好多tarjan+拓扑序dp ...

  8. poj 3660 Cow Contest(传递闭包 Floyd)

    链接:poj 3660 题意:给定n头牛,以及某些牛之间的强弱关系.按强弱排序.求能确定名次的牛的数量 思路:对于某头牛,若比它强和比它弱的牛的数量为 n-1,则他的名次能够确定 #include&l ...

  9. poj 1975 Median Weight Bead(传递闭包 Floyd)

    链接:poj 1975 题意:n个珠子,给定它们之间的重量关系.按重量排序.求确定肯定不排在中间的珠子的个数 分析:由于n为奇数.中间为(n+1)/2,对于某个珠子.若有至少有(n+1)/2个珠子比它 ...

随机推荐

  1. ArrayList调用remove方法需要注意的地方

    ArrayList中有remove 方法和 removeAll方法, ArrayList中不仅继承了接口Collection中的remove方法,而且还扩展了remove方法. Collection中 ...

  2. 实例讲述PHP面向对象的特性;;;php中const与define的使用区别

    php中const与define的使用区别 1.const:类成员变量定义,一旦定义且不能改变其值. define:定义全局常量,在任何地方都可以访问.2.define:不能在类中定义,而const可 ...

  3. Android App罕见错误和优化方案

    本文来自http://blog.csdn.net/liuxian13183/ ,引用必须注明出处! 1.App如果被定义一个有参数构造函数,那么需要再定义一个无参数的,如果不则会在某些情况下初始化失败 ...

  4. 【Android开发学习笔记】【高级】【随笔】插件化——资源加载

    前言 上一节我们针对插件最基本的原理进行了一个简单的demo实现,但是由于插件的Context对象被宿主所接管,因此无法加载插件程序的资源.那么如何解决这个问题捏? 有人提出这样的方案:将apk中的资 ...

  5. WPF自定义RoutedEvent事件示例代码

    ************************* 引用网友,便于查找所用..... 创建自定义路由事件和应用分为6个步骤: (1)自定义路由事件参数对象 (2)声明并注册路由事件 (3)为路由事件添 ...

  6. C# 时间与时间戳互转 13位

    /// <summary> /// 将c# DateTime时间格式转换为Unix时间戳格式 /// </summary> /// <param name="t ...

  7. ViewModel在MVC3中的应用:实现多字段表格的部分更新

    假设我们有这样一张用户表: public class F_users { [Key] [Display(Name="用户名:")] [Required(ErrorMessage=& ...

  8. Android笔记:真机调试无法输出Log 信息的问题

    机器在出厂时将log的级别做了限制,方法是:拨号盘输入*20121220# -> 选择日志输出级别 -> 选择Java log level -> 选择LOGD即可. 方法是:拨号盘输 ...

  9. 完美解决 .txt文件在Mac上不能打开的问题

  10. 面向对象世界里转转七(Liskov替换原则)

    前言:Liskov替换原则是关于继承机制的应用原则,是实现开放封闭原则的具体规范,违反了Liskov原则必然意味着违反了开放封闭原则.因此,有必要对面向对象的继承机制及其基本原则做以探索,来进一步了解 ...