LinkedHashMap 和 LRU算法实现
个人觉得LinkedHashMap 存在的意义就是为了实现 LRU 算法。
public class LinkedHashMap<K,V> extends HashMap<K,V>
implements Map<K,V>
{
public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}
....
1、LinkedHashMap 的 <K,V>用HashMap存储。
2、LinkedHashMap 的Key 用双向链表维护。
当用get 和 set 方法的时候,内部维护key的双向链表的结构顺序会变动。
3、accessOrder:false 基于插入顺序 true 基于访问顺序(get一个元素后,这个元素被加到最后,使用了LRU 最近最少被使用的调度算法)。
4、removeEldestEntry方法,考虑清楚是否要重载。如果最大容量固定,则需要重载,否则表现为自适应。
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}
最简单的LRU算法实现
update1:第二个实现,读操作不必要采用独占锁,缓存显然是读多于写,读的时候一开始用独占锁是考虑到要递增计数和更新时间戳要加锁,不过这两个变量都是采用原子变量,因此也不必采用独占锁,修改为读写锁。
update2:一个错误,老是写错关键字啊,LRUCache的maxCapacity应该声明为volatile,而不是transient。
最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可,如下所示:
import java.util.ArrayList;
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.Map; /**
* 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档
*
* @author dennis
*
* @param <K>
* @param <V>
*/
public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> {
private final int maxCapacity; private static final float DEFAULT_LOAD_FACTOR = 0.75f; private final Lock lock = new ReentrantLock(); public LRULinkedHashMap(int maxCapacity) {
super(maxCapacity, DEFAULT_LOAD_FACTOR, true);
this.maxCapacity = maxCapacity;
} @Override
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
return size() > maxCapacity;
}
@Override
public boolean containsKey(Object key) {
try {
lock.lock();
return super.containsKey(key);
} finally {
lock.unlock();
}
} @Override
public V get(Object key) {
try {
lock.lock();
return super.get(key);
} finally {
lock.unlock();
}
} @Override
public V put(K key, V value) {
try {
lock.lock();
return super.put(key, value);
} finally {
lock.unlock();
}
} public int size() {
try {
lock.lock();
return super.size();
} finally {
lock.unlock();
}
} public void clear() {
try {
lock.lock();
super.clear();
} finally {
lock.unlock();
}
} public Collection<Map.Entry<K, V>> getAll() {
try {
lock.lock();
return new ArrayList<Map.Entry<K, V>>(super.entrySet());
} finally {
lock.unlock();
}
}
}
如果你去看LinkedHashMap的源码可知,LRU算法是通过双向链表来实现,当某个位置被命中,通过调整链表的指向将该位置调整到头位置,新加入的内容直接放在链表头,如此一来,最近被命中的内容就向链表头移动,需要替换时,链表最后的位置就是最近最少使用的位置。
LRU算法还可以通过计数来实现,缓存存储的位置附带一个计数器,当命中时将计数器加1,替换时就查找计数最小的位置并替换,结合访问时间戳来实现。这种算法比较适合缓存数据量较小的场景,显然,遍历查找计数最小位置的时间复杂度为O(n)。我实现了一个,结合了访问时间戳,当最小计数大于MINI_ACESS时(这个参数的调整对命中率有较大影响),就移除最久没有被访问的项:
package net.rubyeye.codelib.util.concurrency.cache; import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock; /**
*
* @author dennis 类说明:当缓存数目不多时,才用缓存计数的传统LRU算法
* @param <K>
* @param <V>
*/
public class LRUCache<K, V> implements Serializable { private static final int DEFAULT_CAPACITY = 100; protected Map<K, ValueEntry> map; private final ReadWriteLock lock = new ReentrantReadWriteLock(); private final Lock readLock = lock.readLock(); private final Lock writeLock = lock.writeLock(); private final volatile int maxCapacity; //保持可见性 public static int MINI_ACCESS = 5; public LRUCache() {
this(DEFAULT_CAPACITY);
} public LRUCache(int capacity) {
if (capacity <= 0)
throw new RuntimeException("缓存容量不得小于0");
this.maxCapacity = capacity;
this.map = new HashMap<K, ValueEntry>(maxCapacity);
} public boolean ContainsKey(K key) {
try {
readLock.lock();
return this.map.containsKey(key);
} finally {
readLock.unlock();
}
} public V put(K key, V value) {
try {
writeLock.lock();
if ((map.size() > maxCapacity - 1) && !map.containsKey(key)) {
// System.out.println("开始");
Set<Map.Entry<K, ValueEntry>> entries = this.map.entrySet();
removeRencentlyLeastAccess(entries);
}
ValueEntry new_value = new ValueEntry(value);
ValueEntry old_value = map.put(key, new_value);
if (old_value != null) {
new_value.count = old_value.count;
return old_value.value;
} else
return null;
} finally {
writeLock.unlock();
}
} /**
* 移除最近最少访问
*/
protected void removeRencentlyLeastAccess(
Set<Map.Entry<K, ValueEntry>> entries) {
// 最小使用次数
long least = 0;
// 访问时间最早
long earliest = 0;
K toBeRemovedByCount = null;
K toBeRemovedByTime = null;
Iterator<Map.Entry<K, ValueEntry>> it = entries.iterator();
if (it.hasNext()) {
Map.Entry<K, ValueEntry> valueEntry = it.next();
least = valueEntry.getValue().count.get();
toBeRemovedByCount = valueEntry.getKey();
earliest = valueEntry.getValue().lastAccess.get();
toBeRemovedByTime = valueEntry.getKey();
}
while (it.hasNext()) {
Map.Entry<K, ValueEntry> valueEntry = it.next();
if (valueEntry.getValue().count.get() < least) {
least = valueEntry.getValue().count.get();
toBeRemovedByCount = valueEntry.getKey();
}
if (valueEntry.getValue().lastAccess.get() < earliest) {
earliest = valueEntry.getValue().count.get();
toBeRemovedByTime = valueEntry.getKey();
}
}
// System.out.println("remove:" + toBeRemoved);
// 如果最少使用次数大于MINI_ACCESS,那么移除访问时间最早的项(也就是最久没有被访问的项)
if (least > MINI_ACCESS) {
map.remove(toBeRemovedByTime);
} else {
map.remove(toBeRemovedByCount);
}
} public V get(K key) {
try {
readLock.lock();
V value = null;
ValueEntry valueEntry = map.get(key);
if (valueEntry != null) {
// 更新访问时间戳
valueEntry.updateLastAccess();
// 更新访问次数
valueEntry.count.incrementAndGet();
value = valueEntry.value;
}
return value;
} finally {
readLock.unlock();
}
} public void clear() {
try {
writeLock.lock();
map.clear();
} finally {
writeLock.unlock();
}
} public int size() {
try {
readLock.lock();
return map.size();
} finally {
readLock.unlock();
}
} public long getCount(K key) {
try {
readLock.lock();
ValueEntry valueEntry = map.get(key);
if (valueEntry != null) {
return valueEntry.count.get();
}
return 0;
} finally {
readLock.unlock();
}
} public Collection<Map.Entry<K, V>> getAll() {
try {
readLock.lock();
Set<K> keys = map.keySet();
Map<K, V> tmp = new HashMap<K, V>();
for (K key : keys) {
tmp.put(key, map.get(key).value);
}
return new ArrayList<Map.Entry<K, V>>(tmp.entrySet());
} finally {
readLock.unlock();
}
} class ValueEntry implements Serializable {
private V value; private AtomicLong count; private AtomicLong lastAccess; public ValueEntry(V value) {
this.value = value;
this.count = new AtomicLong(0);
lastAccess = new AtomicLong(System.nanoTime());
} public void updateLastAccess() {
this.lastAccess.set(System.nanoTime());
} }
}
参考:
简单LRU算法实现缓存-update2
LinkedHashMap 和 LRU算法实现的更多相关文章
- LinkedHashMap实现LRU算法
LinkedHashMap特别有意思,它不仅仅是在HashMap上增加Entry的双向链接,它更能借助此特性实现保证Iterator迭代按照插入顺序(以insert模式创建LinkedHashMap) ...
- 用LinkedHashMap实现LRU算法
(在学习操作系统时,要做一份有关LRU和clock算法的实验报告,很多同学都应该是通过数组去实现LRU,可能是对堆栈的使用和链表的使用不是很熟悉吧,在网上查资料时看到了LinkedHashMap,于是 ...
- 通过LinkedHashMap实现LRU算法
一.基于LinkedHashMap源码分析 方法调用流程(这里只是以put方法位例) put() -> putVal() -> afterNodeInsertion() -> rem ...
- Java集合详解5:深入理解LinkedHashMap和LRU缓存
今天我们来深入探索一下LinkedHashMap的底层原理,并且使用linkedhashmap来实现LRU缓存. 摘要: HashMap和双向链表合二为一即是LinkedHashMap.所谓Linke ...
- Guava---缓存之LRU算法
随笔 - 169 文章 - 0 评论 - 292 GuavaCache学习笔记一:自定义LRU算法的缓存实现 前言 今天在看GuavaCache缓存相关的源码,这里想到先自己手动实现一个LRU ...
- 借助LinkedHashMap实现基于LRU算法缓存
一.LRU算法介绍 LRU(Least Recently Used)最近最少使用算法,是用在操作系统中的页面置换算法,因为内存空间是有限的,不可能把所有东西都放进来,所以就必须要有所取舍,我们应该把什 ...
- 如何用LinkedHashMap实现LRU缓存算法
阿里巴巴笔试考到了LRU,一激动忘了怎么回事了..准备不充分啊.. 缓存这个东西就是为了提高运行速度的,由于缓存是在寸土寸金的内存里面,不是在硬盘里面,所以容量是很有限的.LRU这个算法就是把最近一次 ...
- JDK自带的LinkedHashMap来实现LRU算法
1 代码如下 public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> { private final i ...
- 基于LinkedhashMap实现的LRU算法
LRU全称是Least Recently Used,即最近最久未使用的意思.LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小.也就是说,当限定的空间已存 ...
随机推荐
- UITableview 多行删除
// RootViewController.m #import "RootViewController.h"#import "NextViewController.h& ...
- Operand forms
Operand forms Computer Systems A Programmer's Perspective Second Edition
- P1351 联合权值
#include <bits/stdc++.h> using namespace std; const int maxn = 200005; vector<int> son[m ...
- Apache Kafka源码分析 - autoLeaderRebalanceEnable
在broker的配置中,auto.leader.rebalance.enable (false) 那么这个leader是如何进行rebalance的? 首先在controller启动的时候会打开一个s ...
- Machine Learning in Action -- 树回归
前面介绍线性回归,但实际中,用线性回归去拟合整个数据集是不太现实的,现实中的数据往往不是全局线性的 当然前面也介绍了局部加权线性回归,这种方法有些局限 这里介绍另外一种思路,树回归 基本思路,用决策树 ...
- Python - 求斐波那契数列前N项之和
n = int(input("Input N: ")) a = 0 b = 1 sum = 0 for i in range(n): sum += a a, b = b, a + ...
- 搭建C语言开发环境
大学的时候有数据结构这门课,但...终究还是得学.电脑是win8的,根据网上的教程倒是能安装成功vc6.0并且能够打开新建工程,但是一编译运行就提示兼容性问题. 首先安装C语言编译器.下载MinGw ...
- spring容器IOC创建对象<三>
问题?Spring的DI讲解.DI有几种注入方式.一.spring的DI:依赖注入给属性赋值DI定义:一个对象类的属性可以使用springDI(依赖注入)来进行赋值,但是并不是所有的类属性都适合spr ...
- http协议(转)
主要还是为了存放状态码··· 剖析 HTTP 协议 目录 HTTP 概述 HTTP 消息结构 HTTP 请求 HTTP 响应 HTTP 状态码 参考 回到顶部 HTTP 概述 HTTP 是什么? ...
- Simplest way to serve static data from outside the application server in a Java web application
tomcat service.xml <Context docBase="/path/to/images" path="/images" /> re ...