算法说明:

归并排序的思路就是分而治之,将数组中的数字递归折半进行排序。 递归到最底层就只剩下有两个数字进行比较,再从底层往下进行排序合并。最终得出结果。

同样,语言描述可能对于不知道这个算法的人来说,理解的比较吃力,所以还是举个例子来简单说明一下。

首先,测试数据是int[] arrayData = { 5, 9, 6, 7, 4, 1, 2, 3, 8 }; 一共是9个元素。

然后拿visio画图,来对于归并排序的分而治之进行一下简单的剖析。

整体排序流程大概就是如上图了。 首先先是递归拆分,递归拆分到最底层后,再进行排序,如果参考下边的代码的话,那么Sort方法就是在往最底层递归,Merge方法就是在进行合并。

另外吐个嘈,上边那个图画的很累啊……

时间复杂度:

O(nlgn)

空间复杂度:

O(n+lgn)

代码:

语言:Java

/*
* 归并排序
*/
public class MergeSort {
public static void main(String[] args) {
int[] arrayData = { 5, 9, 6, 7, 4, 1, 2, 3, 8 };
int[] arrayResult = MergeSortMethod(arrayData);
for (int integer : arrayResult) {
System.out.print(integer);
System.out.print(" ");
}
} public static int[] MergeSortMethod(int[] arrayData) {
int[] arrayResult = new int[arrayData.length];
Sort(arrayData, 0, arrayData.length - 1, arrayResult);
return arrayResult;
} public static void Sort(int[] arraySource, int leftIndex, int rightIndex,
int[] arrayResult) {
if (leftIndex < rightIndex) {
int middleIndex = (leftIndex + rightIndex) / 2;
Sort(arraySource, leftIndex, middleIndex, arrayResult);
Sort(arraySource, middleIndex + 1, rightIndex, arrayResult);
Merge(arraySource, leftIndex, middleIndex, rightIndex, arrayResult);
}
} // 进到merge时,leftIndex至middleIndex的数据已被排好序了。
// middleIndex+1至rightIndex的数字也已经被排好序了
// 所以merge就是把排好序的数字合并到arrayResult中
public static void Merge(int[] arraySource, int leftIndex, int middleIndex,
int rightIndex, int[] arrayResult) {
int i = leftIndex;
int j = middleIndex + 1;
int k = 0;
// leftIndex至middleIndex 与 middleIndex+1至rightIndex
// 进行比较,左右两个数组哪个先循环完毕就跳出while
while (i <= middleIndex && j <= rightIndex) {
if (arraySource[i] <= arraySource[j]) {
arrayResult[k++] = arraySource[j++];
} else {
arrayResult[k++] = arraySource[i++];
}
} while (i <= middleIndex) {
arrayResult[k++] = arraySource[i++];
} while (j <= rightIndex) {
arrayResult[k++] = arraySource[j++];
} for (int l = 0; l < k; l++) {
arraySource[leftIndex + l] = arrayResult[l];
}
}
}

结果:

9 8 7 6 5 4 3 2 1

时间复杂度论证:Merge方法的时间复杂度是n ,然后Sort方法因为是二叉树性质的递归,所以时间复杂度是log2n,那么归并排序的复杂度就是O(nlog2n)。  log2n的时间耗费对于数学基础不好的朋友来说可能理解起来很吃力(例如我),所以大家可以参考http://xwrwc.blog.163.com/blog/static/46320003201141582544245/

空间复杂度论证: Merge因为要使用一个临时数组,所以空间复杂度是n。又另因为是递归迭代的,所以递归也占用空间复杂度log2n。所以归并排序的空间复杂度是O(n+log2n)

Hark的数据结构与算法练习之归并排序的更多相关文章

  1. Hark的数据结构与算法练习之多路归并排序

    算法说明 多路归并排序也叫k路归并排序,实际上是归并排序的扩展版,同样也是归并排序的一种,通常的应用场景的针对大数据量的排序. 实现过程: 1.从字面可以看出,多路归并就是将待排的大数据量分成K路,然 ...

  2. JavaScript 数据结构与算法之美 - 归并排序、快速排序、希尔排序、堆排序

    1. 前言 算法为王. 想学好前端,先练好内功,只有内功深厚者,前端之路才会走得更远. 笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 JavaScript ,旨在入门数据结构与算 ...

  3. Hark的数据结构与算法练习之若领图排序ProxymapSort

    算法说明 若领图排序是分布排序的一种. 个人理解,若领图排序算是桶排序+计数排序的变异版,桶排序计数排序理解了,那么若领图排序理解起来就会比较容易.区别其实就是存储中间值的方式做了调整…… 话说,这个 ...

  4. Hark的数据结构与算法练习之珠排序

    ---恢复内容开始--- 算法说明 珠排序是分布排序的一种. 说实在的,这个排序看起来特别的巧妙,同时也特别好理解,不过不太容易写成代码,哈哈. 这里其实分析的特别好了,我就不画蛇添足啦.  大家看一 ...

  5. Hark的数据结构与算法练习之鸽巢排序

    算法说明 鸽巢排序是分布排序的一种,我理解其实鸽巢就是计数排序的简化版,不同之处就是鸽巢是不稳定的,计数排序是稳定的. 逻辑很简单,就是先找出待排数组的最大值maxNum,然后实例一个maxNum+1 ...

  6. Hark的数据结构与算法练习之锦标赛排序

    算法说明 锦标赛排序是选择排序的一种. 实际上堆排序是锦标赛排序的优化版本,它们时间复杂度都是O(nlog2n),不同之处是堆排序的空间复杂度(O(1))远远低于锦标赛的空间复杂度(O(2n-1)) ...

  7. Hark的数据结构与算法练习之圈排序

    算法说明 圈排序是选择排序的一种.其实感觉和快排有一点点像,但根本不同之处就是丫的移动的是当前数字,而不像快排一样移动的是其它数字.根据比较移动到不需要移动时,就代表一圈结束.最终要进行n-1圈的比较 ...

  8. Hark的数据结构与算法练习之梳排序

    算法说明梳排序是交换排序的一种,它其实也是改自冒泡排序,不同之处是冒泡排序的比较步长恒定为1,而梳排序的比较步长是变化的. 步长需要循环以数组长度除以1.3,到最后大于等于1即可. 光说可能比较抽象, ...

  9. Hark的数据结构与算法练习之地精(侏儒)排序

    算法说明 地精排序是交换排序的一种,它是冒泡排序的一种改良,我感觉和鸡尾酒排序挺像的. 不同之处是鸡尾酒排序是从小到大,然后再从大到小切换着排序的.而地精排序是上来先从小到大排序,碰到交换到再从大到小 ...

随机推荐

  1. ZLIB 库

    zlib 编辑 zlib是提供数据压缩用的函式库,由Jean-loup Gailly与Mark Adler所开发,初版0.9版在1995年5月1日发表.zlib使用DEFLATE算法,最初是为libp ...

  2. iphone数据存储之-- Core Data的使用(一)

    http://www.cnblogs.com/xiaodao/archive/2012/10/08/2715477.html 一.概念 1.Core Data 是数据持久化存储的最佳方式 2.数据最终 ...

  3. basic use of sidekiq

    参考页面 https://github.com/mperham/sidekiq https://github.com/mperham/sidekiq/wiki/Getting-Started 强烈推荐 ...

  4. 搭建Nginx+JAVA环境

    搭建Nginx+JAVA环境 Apache对Java的支持很灵活,他们的结合度也很高,例如Apache+Tomcat和Apache+resin等都可以实现对Java应用的支持.Apache一般采用一个 ...

  5. python __init__ __call__

    __call__ 和 __init__半毛钱的关系都没有. 后者是构造类的实例时会调用的方法,并不是构造方法. 前者是在实例上可以呼叫的方法.代码示例如下: >>> class fo ...

  6. apache2:Invalid option to WSGI daemon process definition

    版本说明: ubuntu 12.04 server /apache 2.2 / mod_wsgi 3.3 / python 2.7.3 /django 1.7 在ubuntu12的服务器上配置djan ...

  7. cocos2dx混合模式应用

    //Opacity 0完全透明 255完全不透明 //ALPHA 0完全透明 1完全不透明 CCRenderTexture* pRT = CCRenderTexture::create(480,320 ...

  8. Java for LeetCode 050 Pow(x, n)

    Implement pow(x, n). 解题思路: 直接使用乘法实现即可,注意下,如果n很大的话,递归次数会太多,因此在n=10和n=-10的地方设置一个检查点,JAVA实现如下: static p ...

  9. elk平台分析nginx日志的基本搭建

    一.elk套件介绍 ELK 由 ElasticSearch . Logstash 和 Kiabana 三个开源工具组成.官方网站: https://www.elastic.co/products El ...

  10. 【USACO】ariprog

    输入 : N  M 要找到长度为 N 的等差数列,要求数列中每个数字都可以表达成 a^2 + b^2 的和, 数字大小不超过M^2 + M^2 输出: 等差数列首元素 间隔 (多组答案分行输出) 解题 ...