CodeChef DISTNUM2 Easy Queries 节点数组线段树
Description
You are given an array A consisting of N positive integers. You have to answer Q queries on it of following type:
- l r k : Let S denote the sorted (in increasing order) set of elements of array A with its indices between l and r. Note that set Scontains distinct elements (i.e. no duplicates).
You need to find kth number in it. If such a number does not exist, i.e. the S has less than k elements, output -1.
All the indices in the queries are 1-based.
Input
The first line of input contains two space separated integers N and Q denoting the number of elements in A, and the number of queries, respectively.
The second line of input contains N space separated integers denoting the array A.
Each of the next Q lines contains five integers ai, bi, ci, di, ki.
We will generate li, ri indices for this query as follows:
Let answer for i - 1th query equal ansi - 1.
For 0th query ans0 = 0.
Define li = (ai x max(ansi - 1, 0) + bi) mod N + 1,
ri = (ci x max(ansi-1, 0) + di) mod N + 1.
If li > ri, then swap li and ri.
Output
For each query, output the answer to the query in a single line. If such a number doesn't exist, output -1.
Constraints
- 1 ≤ N, Q ≤ 105
- 1 ≤ Ai ≤ 109
- 0 ≤ ai, bi, ci, di ≤ N
- 1 ≤ li ≤ ri ≤ N
- 1 ≤ ki ≤ N
Example
Input:
4 4
3 2 1 2
0 1 0 3 2
2 0 0 3 4
1 2 1 3 2
2 0 0 3 3 Output:
2
-1
2
3 Input:
10 10
9 10 6 3 8 4 9 6 4 10
0 2 0 9 3
1 9 1 3 3
1 8 1 0 3
1 2 1 7 2
1 6 1 2 3
1 4 1 3 1
1 6 1 6 1
1 4 1 8 1
1 9 1 3 3
1 9 1 2 1 Output:
6
9
10
4
6
3
10
4
6
4
Subtasks
- Subtask #1 (10 points) : Q x N ≤ 107
- Subtask #2 (20 points) : ki = 1
- Subtask #3 (30 points) : ai = 0, ci = 0
- Subtask #4 (40 points) : Original constraints
Explanation
Example #1:
Query 1. Sorted set of elements : {1, 2}. Second number in this is 2.
Query 2. Sorted set of elements : {1, 2, 3}. Fourth number doesn't exist, hence answer is -1.
Query 3. Sorted set of elements : {1, 2}. Second number in this set is 2.
Query 4. Sorted set of elements : {1, 2, 3}. Third number in this set is 3.
题意:
给定长度为N的序列A,其中每个元素都有正整数。
你需要回答Q个询问:
l,r,k:记s为序列 A下标在l到r之间的元素按照升序排列得到的序列(重复元素只留一个)。
你需要求出其第k个元素的值,如果包含小于k个元素,则输出-1.
下标从1开始编号
题解:
线段树,每个节点保存不含重复元素的动态数组
查询的时候二分就OK 复杂度O( q*logn*logn)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
const int N = 1e5+, M = 2e2+, inf = 2e9, mod = 1e9+;
typedef long long ll;
int n, q;
ll ar[N],num[N];
vector< ll > da[ * N];
void merges(vector<ll> &a, vector<ll> &b, vector<ll> &c)
{
int lenb = , lenc = ;
while(lenb < b.size() && lenc < c.size()) {
if(b[lenb] == c[lenc]) {
a.push_back(b[lenb]);
lenb++, lenc++;
}else {
if(b[lenb] < c[lenc]) {
a.push_back(b[lenb++]);
} else a.push_back(c[lenc++]); }
}
while(lenb < b.size()) {
a.push_back(b[lenb++]);
}
while(lenc < c.size()) {
a.push_back(c[lenc++]);
}
} void build(int k,int l,int r) {
if(r == l) {
da[k].push_back(ar[l]);
return ;
}
build(k<<,l,(l+r)/);build(k<<|,(r+l)/+,r);
merges(da[k],da[k<<],da[k<<|]);
}
ll query(int i,int j,ll x,int k,int l,int r) {
if(i==l&&j==r) return upper_bound(da[k].begin(),da[k].end(),x) - da[k].begin();
else {
int mid = (l+r)>>;
if(j<=mid) return query(i,j,x,k<<,l,mid);
else if(i>mid) return query(i,j,x,k<<|,mid+,r);
else return query(i,mid,x,k<<,l,mid)+query(mid+,j,x,k<<|,mid+,r);
}
} ll solve(int l,int r,int k) {
int lb = , rb = n, ans = ;
while(lb<=rb) {
int mid = (lb+rb)>>;
if(query(l,r,num[mid],,,n)>=k) rb = mid-, ans = mid;
else lb = mid + ;
// cout<<1<<endl;
}
if(query(l,r,num[ans],,,n)<k) {
return -;
}
else return num[ans];
}
int main()
{
scanf("%d%d",&n,&q);
for(int i=;i<=n;i++) scanf("%lld",&ar[i]), num[i] = ar[i];
sort(num+,num+n+);
build(,,n);
ll pre = ;
for(int i=;i<=q;i++) {
ll a,b,c,d,k;
scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
int l = (a*max(pre,0ll)+b) % n + ;
int r = (c*max(pre,0ll)+d) % n + ;
printf("%d\n",pre = solve(l,r,k));
}
}
CodeChef DISTNUM2 Easy Queries 节点数组线段树的更多相关文章
- 洛谷P2414 阿狸的打字机 [NOI2011] AC自动机+树状数组/线段树
正解:AC自动机+树状数组/线段树 解题报告: 传送门! 这道题,首先想到暴力思路还是不难的,首先看到y有那么多个,菜鸡如我还不怎么会可持久化之类的,那就直接排个序什么的然后按顺序做就好,这样听说有7 ...
- Can you answer these queries? HDU 4027 线段树
Can you answer these queries? HDU 4027 线段树 题意 是说有从1到编号的船,每个船都有自己战斗值,然后我方有一个秘密武器,可以使得从一段编号内的船的战斗值变为原来 ...
- 树状数组 && 线段树应用 -- 求逆序数
参考:算法学习(二)——树状数组求逆序数 .线段树或树状数组求逆序数(附例题) 应用树状数组 || 线段树求逆序数是一种很巧妙的技巧,这个技巧的关键在于如何把原来单纯的求区间和操作转换为 求小于等于a ...
- hdu1394(枚举/树状数组/线段树单点更新&区间求和)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题意:给出一个循环数组,求其逆序对最少为多少: 思路:对于逆序对: 交换两个相邻数,逆序数 +1 ...
- BZOJ 4636 (动态开节点)线段树
思路: 偷懒 懒得离散化 搞了个动态开节点的线段树 (其实是一样的--..) 注意会有a=b的情况 要判掉 //By SiriusRen #include <cstdio> #includ ...
- [Codeforces 266E]More Queries to Array...(线段树+二项式定理)
[Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...
- hdu 5147 Sequence II【树状数组/线段树】
Sequence IITime Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...
- SPOJ GSS2 - Can you answer these queries II(线段树 区间修改+区间查询)(后缀和)
GSS2 - Can you answer these queries II #tree Being a completist and a simplist, kid Yang Zhe cannot ...
- hdu 1166:敌兵布阵(树状数组 / 线段树,入门练习题)
敌兵布阵 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
随机推荐
- 使用sql server2005全文检索
SQL Server 2005的全文检索采用类似Lucece的技术, 为文本检索做index, 尤其适合大文本字段的检索, 性能比Lucece差一些. 著名的stackoverflow网站也使用过SQ ...
- [原] Android performClick无效,UI线程理解
原因 开发过程中遇到button.performClick()无效,原因是View.performClick()需要再UI线程中调用才会有效执行. 响应系统调用的方法(比如报告用户动作的onKeyDo ...
- HTML 标准属性 和 事件属性
HTML的公共属性 HTML 和 XHTML 标签支持的标准属性 核心属性 (Core Attributes) 以下标签不提供下面的属性:base.head.html.meta.param.scrip ...
- 修改Flume-NG的hdfs sink解析时间戳源码大幅提高写入性能
Flume-NG中的hdfs sink的路径名(对应参数"hdfs.path",不允许为空)以及文件前缀(对应参数"hdfs.filePrefix")支持正则解 ...
- 360双击ctrl搜索可能会与firefox快捷键冲突
最近使用火狐浏览器时有好几次要在网页上的对话框输入文字时出现问题,按下字母键直接跳出了firefox菜单选项,用鼠标重新定位到输入位置再打还是不行,照样会弹出菜单提示,如下图,这可能是有什么快捷键冲突 ...
- 如何用火车头采集当前页面url网址
首先创建一个标签为本文网址,勾选后面的“从网址中采集”. 选择下面的“正则提取”,点击通配符“(?<content>?)”,这样在窗口中就显示为(?<content>[\s\S ...
- xcode arc引起的autorelease报错问题
http://blog.csdn.net/xiechengfa/article/details/37971223 自从用上了真苹果,一直升级,现在xcode版本是4.4,或者说是ios5 一直有个问题 ...
- 原生Android动作
ACTION_ALL_APPS:打开一个列出所有已安装应用程序的Activity.通常,此操作又启动器处理. ACTION_ANSWER:打开一个处理来电的Activity,通常这个动作是由本地电话拨 ...
- HDOJ 1856
#include<cstdio> #include<cstdlib> typedef struct ufse *ufset; struct ufse { ]; ]; }UFS; ...
- 不用任何图片,只用简单的css写出唯美的钟表,就问你行吗?
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgAAAAGHCAIAAABJR31QAAAgAElEQVR4nOy9aXhc1ZUurPvcH7f73n ...