Hadoop在运行一个mapreduce job之前,需要估算这个job的maptask数和reducetask数。首先分析一下job的maptask数,当一个job提交时,jobclient首先分析job被拆分的split数量,然后吧job.split文件放置在HDFS中,一个job的MapTask数量就等于split的个数。

job.split中包含split的个数由FileInputFormat.getSplits计算出,方法的逻辑如下:

1.  读取参数mapred.map.tasks,这个参数默认设置为0,生产系统中很少修改。

2.  计算input文件的总字节数,总字节数/(mapred.map.tasks==0 ? 1: mapred.map.tasks )=goalsize

3.  每个split的最小值minSize由mapred.min.split.size参数设置,这个参数默认设置为0,生产系统中很少修改。

4.  调用computeSplitSize方法,计算出splitsize= Math.max(minSize, Math.min(goalSize, blockSize)),通常这个值=blockSize,输入的文件较小,文件字节数之和小于blocksize时,splitsize=输入文件字节数之和。

5.  对于input的每个文件,计算split的个数。

a)  文件大小/splitsize>1.1,创建一个split,这个split的字节数=splitsize,文件剩余字节数=文件大小-splitsize

b)  文件剩余字节数/splitsize<1.1,剩余的部分作为一个split

举例说明:

1.  input只有一个文件,大小为100M,splitsize=blocksize,则split数为2,第一个split为64M,第二个为36M

2.  input只有一个文件,大小为65M,splitsize=blocksize,则split数为1,split大小为65M

3.  input只有一个文件,大小为129M,splitsize=blocksize,则split数为2,第一个split为64M,第二个为65M(最后一个split的大小可能超过splitsize)

4.  input只有一个文件,大小为20M ,splitsize=blocksize,则split数为1,split大小为20M

5.  input有两个文件,大小为100M和20M,splitsize=blocksize,则split数为3,第一个文件分为两个split,第一个split为64M,第二个为36M,第二个文件为一个split,大小为20M

6.  input有两个文件,大小为25M和20M,splitsize=blocksize,则split数为2,第一个文件为一个split,大小为25M,第二个文件为一个split,大小为20M

假设一个job的input大小固定为100M,当只包含一个文件时,split个数为2,maptask数为2,但当包含10个10M的文件时,maptask数为10。

下面来分析reducetask,纯粹的mapreduce task的reduce task数很简单,就是参数mapred.reduce.tasks的值,hadoop-site.xml文件中和mapreduce job运行时不设置的话默认为1。

在HIVE中运行sql的情况又不同,hive会估算reduce task的数量,估算方法如下:

通常是ceil(input文件大小/1024*1024*1024),每1GB大小的输入文件对应一个reduce task。

特殊的情况是当sql只查询count(*)时,reduce task数被设置成1。

总结:通过map和reducetask数量的分析可以看出,hadoop/hive估算的map和reduce task数可能和实际情况相差甚远。假定某个job的input数据量庞大,reduce task数量也会随之变大,而通过join和group by,实际output的数据可能不多,但reduce会输出大量的小文件,这个job的下游任务将会启动同样多的map来处理前面reduce产生的大量文件。在生产环境中每个user group有一个map task数的限额,一个job启动大量的map task很显然会造成其他job等待释放资源。

Hive对于上面描述的情况有一种补救措施,参数hive.merge.smallfiles.avgsize控制hive对output小文件的合并,当hiveoutput的文件的平均大小小于hive.merge.smallfiles.avgsize-默认为16MB左右,hive启动一个附加的mapreducejob合并小文件,合并后文件大小不超过hive.merge.size.per.task-默认为256MB。

尽管Hive可以启动小文件合并的过程,但会消耗掉额外的计算资源,控制单个reduce task的输出大小>64MB才是最好的解决办法。

map数据计算示例:

hive> set dfs.block.size;
dfs.block.size=268435456
hive> set mapred.map.tasks;
mapred.map.tasks=2

文件块大小为256MB,map.tasks为2

查看文件大小和文件数:
[dwapp@dw-yuntigw-63 hadoop]$ hadoop dfs -ls /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25;
Found 18 items
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  290700555 2012-11-26 19:00 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000000_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  290695945 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000001_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  290182606 2012-11-26 19:00 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000002_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  271979933 2012-11-26 19:00 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000003_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258448208 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000004_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258440338 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000005_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258419852 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000006_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258347423 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000007_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258349480 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000008_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258301657 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000009_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258270954 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000010_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258266805 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000011_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258253133 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000012_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258236047 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000013_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258239072 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000014_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258170671 2012-11-26 19:00 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000015_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258160711 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000016_0
-rw-r-----   3 alidwicbu cug-alibaba-dw-icbu  258085783 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000017_0

文件: 大小Bytes 大小MB   splitsize(MB) 每个文件需要的map数量
文件1 290700555 277.2336531   256 1.082943957
文件2 290695945 277.2292566   256 1.082926784
文件3 290182606 276.7396984   256 1.081014447
文件4 271979933 259.3802767   256 1.013204206
文件5 258448208 246.4754181   256 0.962794602
文件6 258440338 246.4679127   256 0.962765284
文件7 258419852 246.4483757   256 0.962688968
文件8 258347423 246.379302   256 0.962419149
文件9 258349480 246.3812637   256 0.962426811
文件10 258301657 246.3356562   256 0.962248657
文件11 258270954 246.3063755   256 0.962134279
文件12 258266805 246.3024187   256 0.962118823
文件13 258253133 246.2893801   256 0.962067891
文件14 258236047 246.2730856   256 0.962004241
文件15 258239072 246.2759705   256 0.96201551
文件16 258170671 246.2107382   256 0.961760696
文件17 258160711 246.2012396   256 0.961723592
文件18 258085783 246.1297827   256 0.961444464
总文件大小: 4759549173 4539.059804      

goalSize = 4539.059804 (文件总大小)/ mapred.map.tasks(2) = 2269.529902MB

因此splitsize取值为256MB,所以一共分配18个map。

修改map.tasks参数为32
set mapred.map.tasks = 32;

文件: 大小Bytes 大小MB   splitsize(MB) 每个文件需要的map数量
文件1 290700555 277.2336531   141.8 1.955103336
文件2 290695945 277.2292566   141.8 1.955072332
文件3 290182606 276.7396984   141.8 1.951619876
文件4 271979933 259.3802767   141.8 1.829198002
文件5 258448208 246.4754181   141.8 1.738190537
文件6 258440338 246.4679127   141.8 1.738137607
文件7 258419852 246.4483757   141.8 1.737999829
文件8 258347423 246.379302   141.8 1.737512708
文件9 258349480 246.3812637   141.8 1.737526543
文件10 258301657 246.3356562   141.8 1.737204909
文件11 258270954 246.3063755   141.8 1.736998417
文件12 258266805 246.3024187   141.8 1.736970513
文件13 258253133 246.2893801   141.8 1.736878562
文件14 258236047 246.2730856   141.8 1.73676365
文件15 258239072 246.2759705   141.8 1.736783995
文件16 258170671 246.2107382   141.8 1.736323965
文件17 258160711 246.2012396   141.8 1.736256979
文件18 258085783 246.1297827   141.8 1.735753051
总文件大小: 4759549173 4539.059804      

goalSize = 4539.059804 / mapred.map.tasks(32)  = 141.8456189

因此splitsize取值为141.8MB,所以一共分配36个map。

Hadoop map和reduce数量估算的更多相关文章

  1. Hadoop 中关于 map,reduce 数量设置

    map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务 ...

  2. 如何确定 Hadoop map和reduce的个数--map和reduce数量之间的关系是什么?

    1.map和reduce的数量过多会导致什么情况?2.Reduce可以通过什么设置来增加任务个数?3.一个task的map数量由谁来决定?4.一个task的reduce数量由谁来决定? 一般情况下,在 ...

  3. 如何确定Hadoop中map和reduce的个数--map和reduce数量之间的关系是什么?

    一般情况下,在输入源是文件的时候,一个task的map数量由splitSize来决定的,那么splitSize是由以下几个来决定的 goalSize = totalSize / mapred.map. ...

  4. Hadoop :map+shuffle+reduce和YARN笔记分享

    今天做了一个hadoop分享,总结下来,包括mapreduce,及shuffle深度讲解,还有YARN框架的详细说明等. v\:* {behavior:url(#default#VML);} o\:* ...

  5. hive优化,控制map、reduce数量

    一.调整hive作业中的map数 1.通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为1 ...

  6. MapReduce剖析笔记之五:Map与Reduce任务分配过程

    在上一节分析了TaskTracker和JobTracker之间通过周期的心跳消息获取任务分配结果的过程.中间留了一个问题,就是任务到底是怎么分配的.任务的分配自然是由JobTracker做出来的,具体 ...

  7. hadoop中map和reduce的数量设置问题

    转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务 ...

  8. Hadoop map reduce 任务数量优化

    mapred.tasktracker.map.tasks.maximum 官方解释:The maximum number of map tasks that will be run  simultan ...

  9. hadoop中map和reduce的数量设置

    hadoop中map和reduce的数量设置,有以下几种方式来设置 一.mapred-default.xml 这个文件包含主要的你的站点定制的Hadoop.尽管文件名以mapred开头,通过它可以控制 ...

随机推荐

  1. Oracle 截取、查找字符函数(持续更新)

    整理一些常用的截取.查找字符函数: 1.查找某一个字符串中某一个字符(串)出现的次数 SELECT LENGTH(REGEXP_REPLACE(REPLACE('anne<br>lily& ...

  2. su - root 报su: incorrect password的错误

    检查/bin/下面的文件的组属 和 sh 文件 的权限 是否有问题 例如:-rwxr-xr-x. 1 weblogic dba 34904 Jul 15  2011 /bin/su1   修改这个文件 ...

  3. yum 安装 phpmyadmin

    1.安装apache yum -y install httpd httpd-devel 2.安装phpmyadmin yum -y -install phpmyadmin 3.配置phpmyadmin ...

  4. struts2 学习记录 过滤器 国际化

    struts2接触不是一天两天了,但是一直没有用它做什么项目,但老师确一直说它有很大的学习价值,所以还是把我学习到的东西给记录一下,记录的东西没有规律,只是给自己留个备份, struts2中最关键的是 ...

  5. jQuery官方基础教程笔记(转载)

    本文转载于阮一峰的博文,内容基础,结构清晰,是jquery入门不可多得的资料,非常好,赞一个. 阮一峰:jQuery官方基础教程笔记 jQuery是目前使用最广泛的javascript函数库. 据统计 ...

  6. VM - Bridge Adapter

    如何让外部可以连到本地的虚拟机. 1. 网络模式 - Bridged Adapter 2. 确保本机插上网线 3. 如果虚拟机是 Windows 8.1, 需要开启如下选项.

  7. 2014 New Year’s First Blog

    新年开篇博客,依旧是流水账. 读到一篇强文,<关于两个世界体系的对话>.common practice 往往是针对某种语言或者特定技术为背景,然而,很多时候,common practice ...

  8. Titanium系列--利用Titanium开发android App实战总结

    1. Titanium中,通过ImageView Controller 显示图片,图片地址要放在app/assets下,然后自己建一个文件夹,把图片放在这里.如下图,然后alloy代码:<Ima ...

  9. line-height,vertical-align及图片居中对齐问题根源解析

    关于图片居中对齐的问题,进入前端行业虽然有一段时间了,以为自己懂了,可是实际上还是一知半解,找了一些博客来看了一下,但是感觉讲的有点碎,看完还是一知半解. 查阅了一下<css权威指南>,结 ...

  10. 【原创】“借贷宝”砸钱,邀请码 GZZKZK2 (注册成功每人可得20现金,可直接提现)。。。而这只是开始

    作为IT/互联网资深码农的我,从专业技术角度剖析其流程,确认其各个环节控制严格,无欺诈嫌疑, 最佳运气邀请码 : GZZKZK2, 你在注册时值得拥有, 无邀请码无奖励, 亲一定要记住.对 APP操作 ...