Wormholes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 35103   Accepted: 12805

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

Source

题目大意:虫洞问题,现在有n个点,m条边,代表现在可以走的通路,比如从a到b和从b到a需要花费c时间,现在在地上出现了w个虫洞,虫洞的意义就是你从a到b话费的时间是-c(时间倒流,并且虫洞是单向的),现在问你从某个点开始走,能回到从前

解题思路:其实给出了坐标,这个时候就可以构成一张图,然后将回到从前理解为是否会出现负权环,用bellman-ford就可以解出了

#include<stdio.h>
#include<string.h>
#include<stack>
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
int u,v,w;
}que[5400];
int n,m,wh;
int Count;
int inf=999999999;
int dis[5000];
bool bellman_ford(){
memset(dis,inf,sizeof(dis));
dis[1]=0;
int flag;
int a,b,c;
for(int i=1;i<n;i++){
flag=0;
for(int j=0;j<Count;j++){
a=que[j].u,b=que[j].v,c=que[j].w;
if(dis[b]>dis[a]+c){
dis[b]=dis[a]+c;
flag=1;
}
}
if(!flag)
break;
}
for(int j=0;j<Count;j++){
a=que[j].u,b=que[j].v,c=que[j].w;
if(dis[b]>dis[a]+c)
return true;}
return false;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
Count=0;
scanf("%d%d%d",&n,&m,&wh);
int t1,t2,t3;
for(int i=1;i<=m;i++){ scanf("%d%d%d",&t1,&t2,&t3);
que[Count].u=t1;
que[Count].v=t2;
que[Count].w=t3;
Count++;
que[Count].u=t2;
que[Count].v=t1;
que[Count].w=t3;
Count++;
}
for(int i=m+1;i<=m+wh;i++){
scanf("%d%d%d",&t1,&t2,&t3);
que[Count].u=t1;
que[Count].v=t2;
que[Count].w=-t3;
Count++;
}
if(bellman_ford())
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

  

poj3259 bellman——ford Wormholes解绝负权问题的更多相关文章

  1. poj 3259 bellman最短路推断有无负权回路

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 36717   Accepted: 13438 Descr ...

  2. POJ 3259 Wormholes 虫洞(负权最短路,负环)

    题意: 给一个混合图,求判断是否有负环的存在,若有,输出YES,否则NO.有重边. 思路: 这是spfa的功能范围.一个点入队列超过n次就是有负环了.因为是混合图,所以当你跑一次spfa时发现没有负环 ...

  3. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  4. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  5. poj-3259 Wormholes(无向、负权、最短路之负环判断)

    http://poj.org/problem?id=3259 Description While exploring his many farms, Farmer John has discovere ...

  6. poj 3259 Wormholes 判断负权值回路

    Wormholes Time Limit: 2000 MS Memory Limit: 65536 KB 64-bit integer IO format: %I64d , %I64u   Java ...

  7. Wormholes 最短路判断有无负权值

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  8. [ACM] POJ 3259 Wormholes (bellman-ford最短路径,推断是否存在负权回路)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29971   Accepted: 10844 Descr ...

  9. POJ 3259 Wormholes Bellman_ford负权回路

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

随机推荐

  1. Boostrap(4)

    1.按钮 <!doctype html> <html> <head> <meta charset="utf-8"> <titl ...

  2. 如何引用XML文件生成C#类

    目录 XSD File Generate Class File Simply. 1 Why use XSD file to create C# classes?... 2 How to convert ...

  3. AngularJS开发指南12:AngularJS的模板,CSS,数据绑定详解

    模板 AngularJS模板是一种声明式的规则.它包含了模型和控制器的信息,最后会被渲染成用户在浏览器中看到的视图.它是静态的DOM,包含HTML,CSS和AngularJS指定的元素和属性.Angu ...

  4. 手把手教你Dojo入门

    如果仅仅是为了练习Dojo,或者进行测试,可以参考下面的步骤.下面的文件均是在Windows下测试 需要的工具 1 Tomcat服务器:下载地址 选择适合自己的机器型号,即可 2 Dojo的工具包:下 ...

  5. Moqui之时间转换

    <script><![CDATA[ if (fromDate == null && thruDate == null && year &&am ...

  6. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  7. HDU1242 Rescue

    Rescue Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Description A ...

  8. (Beta)Let's-版本发布说明

      Let's App(Beta)现已隆重上市   GIT源码请戳此处 版本的新功能 我们在这一版本对于项目的规划目标主要集中在三个方面——预约用户观感,完善功能链条,改善用户体验 界面 首先,在β阶 ...

  9. IOS基础之(十四) KVO/KVC

    资料参考: http://www.cnblogs.com/kenshincui/p/3871178.html http://www.cnblogs.com/stoic/archive/2012/07/ ...

  10. 全程图解 手把手教您开启windows终端服务

    一.什么是远程桌面? 远程桌面是微软公司为了方便网络管理员管理维护服务器而推出的一项服务.从windows 2000 server版本开始引入,网络管理员使用远程桌面连接程序连接到网络任意一台开启了远 ...