题意: 给一些平面上的点,然后给一些查询(x,y),即以(x,y)为原点建立坐标系,一个人拿走第I,III象限的点,另一个人拿II,IV象限的,点不会在任何一个查询的坐标轴上,问每次两人的点数差为多少。

解法:离线树状数组。点不在坐标轴上,即点不共线使这题简单了不少,可以离散化点,也可以不离散化,因为x,y <= 500000,直接就可以搞。我这里是离散的,其实也没比直接搞快。

见两个树状数组,一个先把所有点都modify进去,一个等待以后加元素。

然后将查询和给出的点都按y坐标排序,然后离线对每个查询执行操作了。每次查询前把y坐标小于当前查询点的点加入树状数组。

这时的 左下角点数即为: LD = getsum(c2,Q[i].x-1);

右上角: UR = getsum(c1,maxi)-getsum(c1,Q[i].x)-(getsum(c2,maxi)-getsum(c2,Q[i].x));  即为整个右边的个数减去y坐标小于此点的(即为右下角)。

那么另两个象限的综述就是 n-LD-UR。

这样就解决了。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 100007 struct node{
int x,y,ind;
}p[N],Q[N];
int n,m,maxi;
int c1[N],c2[N],a[N],b[N],ans[N];
int ma[],mb[];
int lowbit(int x) { return x&-x; }
int cmp(node ka,node kb) { return ka.y < kb.y; } void modify(int *c,int x,int val)
{
while(x <= maxi)
c[x] += val, x += lowbit(x);
} int getsum(int *c,int x)
{
int res = ;
while(x > ) { res += c[x]; x -= lowbit(x); }
return res;
} int main()
{
int i,j,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
{
scanf("%d%d",&p[i].x,&p[i].y);
a[i] = p[i].x, b[i] = p[i].y;
}
for(i=;i<=m;i++)
{
scanf("%d%d",&Q[i].x,&Q[i].y);
a[i+n] = Q[i].x, b[i+n] = Q[i].y;
Q[i].ind = i;
}
sort(a+,a+n+m+);
sort(b+,b+n+m+);
int inda = unique(a+,a+n+m+)-a-;
int indb = unique(b+,b+n+m+)-b-;
maxi = max(inda,indb);
for(i=;i<=inda;i++) ma[a[i]] = i;
for(i=;i<=indb;i++) mb[b[i]] = i; for(i=;i<=n;i++) p[i].x = ma[p[i].x], p[i].y = mb[p[i].y];
for(i=;i<=m;i++) Q[i].x = ma[Q[i].x], Q[i].y = mb[Q[i].y];
sort(p+,p+n+,cmp);
sort(Q+,Q+m+,cmp);
memset(c1,,sizeof(c1));
memset(c2,,sizeof(c2));
for(i=;i<=n;i++)
modify(c1,p[i].x,);
j = ;
for(i=;i<=m;i++)
{
while(j <= n && p[j].y <= Q[i].y)
modify(c2,p[j].x,), j++;
int LD = getsum(c2,Q[i].x-);
int UR = getsum(c1,maxi)-getsum(c1,Q[i].x)-(getsum(c2,maxi)-getsum(c2,Q[i].x));
ans[Q[i].ind] = abs(*(LD+UR)-n);
}
for(i=;i<=m;i++) printf("%d\n",ans[i]);
if(t >= ) puts("");
}
return ;
}

直接搞不离散的代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 500007 struct node{
int x,y,ind;
}p[N],Q[N];
int n,m,maxi;
int c1[N],c2[N],a[N],b[N],ans[N];
int lowbit(int x) { return x&-x; }
int cmp(node ka,node kb) { return ka.y < kb.y; } void modify(int *c,int x,int val)
{
while(x <= maxi)
c[x] += val, x += lowbit(x);
} int getsum(int *c,int x)
{
int res = ;
while(x > ) { res += c[x]; x -= lowbit(x); }
return res;
} int main()
{
int i,j,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
{
scanf("%d%d",&p[i].x,&p[i].y);
p[i].x++, p[i].y++;
maxi = max(maxi,p[i].x);
}
for(i=;i<=m;i++)
{
scanf("%d%d",&Q[i].x,&Q[i].y);
Q[i].x++, Q[i].y++;
Q[i].ind = i;
maxi = max(maxi,Q[i].x);
}
sort(p+,p+n+,cmp);
sort(Q+,Q+m+,cmp);
memset(c1,,sizeof(c1));
memset(c2,,sizeof(c2));
for(i=;i<=n;i++)
modify(c1,p[i].x,);
j = ;
for(i=;i<=m;i++)
{
while(j <= n && p[j].y <= Q[i].y)
modify(c2,p[j].x,), j++;
int LD = getsum(c2,Q[i].x-);
int UR = getsum(c1,maxi)-getsum(c1,Q[i].x)-(getsum(c2,maxi)-getsum(c2,Q[i].x));
ans[Q[i].ind] = abs(*(LD+UR)-n);
}
for(i=;i<=m;i++) printf("%d\n",ans[i]);
if(t >= ) puts("");
}
return ;
}

POJ 3416 Crossing --离线+树状数组的更多相关文章

  1. HDU 2852 KiKi's K-Number(离线+树状数组)

    题目链接 省赛训练赛上一题,貌似不难啊.当初,没做出.离线+树状数组+二分. #include <cstdio> #include <cstring> #include < ...

  2. CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组

    题目链接:CF #365 (Div. 2) D - Mishka and Interesting sum 题意:给出n个数和m个询问,(1 ≤ n, m ≤ 1 000 000) ,问在每个区间里所有 ...

  3. CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组(转)

    转载自:http://www.cnblogs.com/icode-girl/p/5744409.html 题目链接:CF #365 (Div. 2) D - Mishka and Interestin ...

  4. HDU3333 Turing Tree 离线树状数组

    题意:统计一段区间内不同的数的和 分析:排序查询区间,离线树状数组 #include <cstdio> #include <cmath> #include <cstrin ...

  5. 离线树状数组 hihocoder 1391 Countries

    官方题解: // 离线树状数组 hihocoder 1391 Countries #include <iostream> #include <cstdio> #include ...

  6. 13年山东省赛 Boring Counting(离线树状数组or主席树+二分or划分树+二分)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 2224: Boring Counting Time Limit: 3 Sec   ...

  7. 区间的关系的计数 HDU 4638 离线+树状数组

    题目大意:给你n个人,每个人都有一个id,有m个询问,每次询问一个区间[l,r],问该区间内部有多少的id是连续的(单独的也算是一个) 思路:做了那么多离线+树状数组的题目,感觉这种东西就是一个模板了 ...

  8. BZOJ_2743_[HEOI2012]采花_离线+树状数组

    BZOJ_2743_[HEOI2012]采花_离线+树状数组 Description 萧芸斓是Z国的公主,平时的一大爱好是采花.今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花 .花园足够大 ...

  9. SPOJ DQUERY - D-query (莫队算法|主席树|离线树状数组)

    DQUERY - D-query Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query ...

随机推荐

  1. PEM (Privacy Enhanced Mail) Encoding

    PEM (Privacy Enhanced Mail) Encoding The moPEM (Privacy Enhanced Mail) Encoding The most commonly us ...

  2. java线程控制、状态同步、volatile、Thread.interupt以及ConcurrentLinkedQueue

    在有些严格的系统中,我们需要做到干净的停止线程并清理相关状态.涉及到这个主题会带出很多的相关点,简单的总结如下: 我们知道,在java中,有一个volatile关键字,其官方说明(https://do ...

  3. [js开源组件开发]图片放大镜

    图片放大镜 一般情况下,手机由于屏幕太小,会有图片上看不清的问题,所以我就做了一个放大镜的js效果,支持pc和移动端.它的原理是利用的backgroundsize来实现的,所以你的浏览器首先要支持这个 ...

  4. Android studio 快捷添加构造方法以及set与get

    第一种方式 快捷键: Alt + lnsert (笔记本可能没有后面的按键) 按快捷键会出现下面这个页面: 第二种方式:点开后是跳出上面那个选择框

  5. lazyload.js详解

    简介 lazyload.js用于长页面图片的延迟加载,视口外的图片会在窗口滚动到它的位置时再进行加载,这是与预加载相反的. 优点: 它可以提高页面加载速度: 在某些情况清晰它也可以帮助减少服务器负载. ...

  6. android 永不关闭toast

    Toast信息提示框之所以在显示一定时间后会自动关闭,是因为在系统中有一个Toast队列;那么有些时候需要这个Toast信息提示框长时间显示,直到需要关闭它时通过代码来控制,而不是让系统自动来关闭To ...

  7. Python基础(5)--字典

    字典由多个键及与其对应的值构成的对组成(把键值对成为项),每个键和它的值之间用冒号(:)隔开,项之间用逗号(,)隔开,而整个字典由一对大括号括起来.空字典由两个大括号组成:{} 本文地址:http:/ ...

  8. C语言-06-复杂数据类型

    一.数组 1> 数组的定义和初始化 定义 ① 数组定义了同种类型数据的集合 ② 定义数组时,数组必须有固定的长度 初始化 ① 如果在定义数组时,初始化数组,数组元素的个数必须是常量 ② 如果不在 ...

  9. find locate

    locate执行前先 updatedb 然后locate vstore 就可以了 find 加 -name 比如 find -name vstore 按理说 locate要快点,毕竟是数据库嘛 一:l ...

  10. 通过java来批量生成身份证号

    通过java来批量生成身份证号,方便来测试程序. package com.diyvc.controller.user; import java.util.Calendar; import java.u ...