POJ3020Antenna Placement(最小路径覆盖+重在构图)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7788 | Accepted: 3880 |
Description
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?
Input
Output
Sample Input
2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*
Sample Output
17
5 http://blog.csdn.net/lyy289065406/article/details/6647040
题目大意:
一个矩形中,有N个城市’*’,现在这n个城市都要覆盖无线,若放置一个基站,那么它至多可以覆盖相邻的两个城市。
问至少放置多少个基站才能使得所有的城市都覆盖无线?
解题思路:
思前想后,依稀可以认为是一道求二分图的最小路径覆盖问题(我就想求点覆盖了,但是如果想想如果是独立的点的话,就会排除点覆盖,因为点覆盖的是连线)
(注意不是最小点覆盖)
那么接下来需要确认的是,
究竟是求 有向二分图的最小路覆盖,还是求 无向二分图的最小路覆盖
因为有向和无向是截然不同的计算方法。
要确认是构造有向图,还是构造无向图,那么就需要先根据题意,看看构造二分图时所使用的方式,更适合构造哪一种二分图。
然后就进入了本题难点:如何构造二分图
首先要明确的是,输入的一堆“圈圈星星”可以看做是一张大地图,地图上有所有城市的坐标,但是这里有一个误区:不能简单地把城市的两个x、y坐标作为准备构造的二分图的两个顶点集。
城市才是要构造的二分图的顶点!
构造方法如下:
例如输入:
*oo
***
O*o
时,可以抽象为一个数字地图:
100
234
050
数字就是根据输入的城市次序作为该城市的编号,0代表该位置没有城市。
然后根据题目的“范围”规则,从第一个城市开始,以自身作为中心城市,向四个方向的城市进行连线(覆盖)
因此就能够得到边集:
e12 e21 e32 e43 e53
e23 e34
e35
可以看到,这些边都是有向边,但是每一条边都有与其对应的一条相反边。
即任意两个城市(顶点)之间的边是成对出现的
那么我们就可以确定下来,应该 构造无向二分图(其实无向=双向)
因为若要构造有向的二分图时,需要判断已出现的边,是很麻烦的工作
为了把有向图G构造为无向二分图,这里需要引入一个新名词“拆点”
其实就是把原有向图G的每一个顶点都”拆分(我认为复制更准确)”为2个点,分别属于所要构造的二分图的两个顶点集
例如在刚才的例子中抽出一条有向边e12举例说明:
复制顶点1和顶点2,使得1,2∈V1; 1’,2’∈V2 ,不难发现|V1|=|V2|
根据边e12和e21,得到无向二分图:
那么同理就可以得到刚才的例子的 无向二分图为:
再继而通过无向二分图,以V1的元素作为row,V2的元素作为col,构造 可达矩阵 存储到计算机
1’ 2’ 3’ 4’ 5’
1 F T F F F
2 T F T F F
3 F T F T T
4 F F T F F
5 F F T F F
接下来就是要求这个 无向二分图的最小路径覆盖 了
利用公式:
无向二分图的最小路径覆盖 = 顶点数 – 最大二分匹配数/2
顶点数:就是用于构造无向二分图的城市数,即进行“拆点”操作前的顶点数量
最大二分匹配书之所以要除以2,是因为进行了“拆点”擦奥做做使得匹配总数多了一倍,因此除以2得到原图的真正的匹配数
最后剩下的问题就是求最大二分匹配数了,用匈牙利算法,这就不多说了,参考POJ3041的做法,基本一摸一样。
从这道题得出了一个结论:
当二分图的两个顶点子集基数相等时,该二分图所有顶点的匹配数 等于 任意一个顶点子集匹配数的2倍
其实匈牙利算法解题是极为简单的,但是图论的难并不是难在解答,而是建图的过程,也难怪会有牛曰:用匈牙利算法,建图是痛苦的,最后是快乐的。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAX = ;
int g[MAX][MAX],s[MAX*MAX][MAX*MAX];
int vis[],link[];
char ch;
int t,m,n,k;
int dfs(int x)
{
for(int i = ; i < k; i++)
{
if(vis[i] == && s[x][i])
{
vis[i] = ;
if(link[i] == || dfs(link[i]))
{
link[i] = x;
return true;
}
}
}
return false;
}
int main()
{
scanf("%d",&t);
while(t--)
{
k = ;
scanf("%d%d",&n,&m);
memset(g,,sizeof(g));
memset(s,,sizeof(s));
memset(link,,sizeof(link));
getchar();
for(int i = ; i <= n; i++)
{
for(int j = ; j <= m; j++)
{
scanf("%c",&ch);
if(ch == '*')
g[i][j] = k++;
}
getchar();
}
for(int i = ; i <= n; i++)
{
for(int j = ; j <= m; j++)
{
if(g[i][j])
{
if(g[i - ][j])
s[ g[i][j] ][ g[i - ][j] ] = ;
if(g[i + ][j])
s[ g[i][j] ][ g[i + ][j] ] = ;
if(g[i][j + ])
s[ g[i][j] ][ g[i][j + ] ] = ;
if(g[i][j - ])
s[ g[i][j] ][ g[i][j - ] ] = ;
} }
}
int ans = ;
for(int i = ; i < k; i++)
{
memset(vis,,sizeof(vis));
if(dfs(i))
ans++;
}
printf("%d\n",k - ans / - );
} return ;
}
POJ3020Antenna Placement(最小路径覆盖+重在构图)的更多相关文章
- poj 3020 Antenna Placement (最小路径覆盖)
链接:poj 3020 题意:一个矩形中,有n个城市'*'.'o'表示空地,如今这n个城市都要覆盖无线,若放置一个基站, 那么它至多能够覆盖本身和相邻的一个城市,求至少放置多少个基站才干使得全部的城市 ...
- poj 3020 Antenna Placement(最小路径覆盖 + 构图)
http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS Memory Limit: 65536K Total Sub ...
- POJ 3020 Antenna Placement【二分匹配——最小路径覆盖】
链接: http://poj.org/problem?id=3020 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...
- POJ3020 Antenna Placement(二分图最小路径覆盖)
The Global Aerial Research Centre has been allotted the task of building the fifth generation of mob ...
- POJ 3020——Antenna Placement——————【 最小路径覆盖、奇偶性建图】
Antenna Placement Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u S ...
- POJ:3020-Antenna Placement(二分图的最小路径覆盖)
原题传送:http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS Memory Limit: 65536K Descri ...
- POJ 3020:Antenna Placement(无向二分图的最小路径覆盖)
Antenna Placement Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6334 Accepted: 3125 ...
- poj 3020 Antenna Placement (最小路径覆盖)
二分图题目 当时看到网上有人的博客写着最小边覆盖,也有人写最小路径覆盖,我就有点方了,斌哥(kuangbin)的博客上只给了代码,没有解释,但是现在我还是明白了,这是个最小路径覆盖(因为我现在还不知道 ...
- Antenna Placement POJ - 3020 二分图匹配 匈牙利 拆点建图 最小路径覆盖
题意:图没什么用 给出一个地图 地图上有 点 一次可以覆盖2个连续 的点( 左右 或者 上下表示连续)问最少几条边可以使得每个点都被覆盖 最小路径覆盖 最小路径覆盖=|G|-最大匹配数 ...
随机推荐
- Python-操作Memcache、Redis、RabbitMQ、
Memcache 简述: Memcache是一套分布式的高速缓存系统,由LiveJournal的Brad Fitzpatrick开发,但目前被许多网站使用以提升网站的访问速度,尤其对于一些大型的.需要 ...
- Android studio导入eclipse项目混淆打包出错
将proguard-android.txt复制一份重命名成proguard-rules.pro,且在build.gradle添加 release { minifyEnabled ...
- JS实现点击跳转登陆邮箱
前言 注册的过程中往往需要填写邮箱,并登陆邮箱进行验证.利用JS可以实现针对不同的邮箱进行点击登录验证,以下为实现方案,很简单 代码 邮箱域名数据 1 2 3 4 5 6 7 8 9 10 11 ...
- Web消息主体风格(Message Body Style)
对于Web HTTP编程模型来说,服务契约中作为操作的方法无须应用OperationContractAttribute特性,只需要根据需要应用WebGetAttribute与WebInvokeAttr ...
- matlab数据转换为字符串并合并字符串标注到图像曲线上
1.把数字转换为字符串 [函数描述]str=num2str(A):把数组A中元素取小数点后四位,并转换为字符串. [函数实例]把数字转换为字符串,输入语句: str1=num2str(pi) str2 ...
- 信息安全系统设计基础第四次实验报告20135324&&20135330
课程:信息安全系统设计基础 班级:1353 姓名:杨舒雯 张若嘉 学号:20135324,20135330 实验日期:2015.11.17 15:30-17:30 实验名称:外设驱动程序设计 实验目的 ...
- [USACO 1.5.4]checker(水题重做——位运算(lowbit的应用))
描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 0 1 2 3 4 5 6 ------- ...
- Bootstrap3.0学习第二十五轮(JavaScript插件——折叠)
详情请查看http://aehyok.com/Blog/Detail/31.html 个人网站地址:aehyok.com QQ 技术群号:206058845,验证码为:aehyok 本文文章链接:ht ...
- C/C++语言算法题——替换
[问题] Description 给定一个有限长度的非负整数序列.一次操作是指从第一个元素开始,依次把数列中的每个数替换为它右边比它小的数的个数.对该数列不断进行这个操作.总有一个时刻该数列将不再发生 ...
- UVA 540 stl
Queues and Priority Queues are data structures which are known to most computer scientists. The Team ...