简单几何(求凸包点数) POJ 1228 Grandpa's Estate
题意:判断一些点的凸包能否唯一确定
分析:如果凸包边上没有其他点,那么边想象成橡皮筋,可以往外拖动,这不是唯一确定的。还有求凸包的点数<=2的情况一定不能确定。
/************************************************
* Author :Running_Time
* Created Time :2015/11/4 星期三 10:24:45
* File Name :POJ_1228.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const double EPS = 1e-10;
const double PI = acos (-1.0);
int dcmp(double x) {
if (fabs (x) < EPS) return 0;
else return x < 0 ? -1 : 1;
}
struct Point {
double x, y;
Point () {}
Point (double x, double y) : x (x), y (y) {}
Point operator - (const Point &r) const {
return Point (x - r.x, y - r.y);
}
bool operator < (const Point &r) const {
return x < r.x || (x == r.x && y < r.y);
}
bool operator == (const Point &r) const {
return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0;
}
};
typedef Point Vector;
Point read_point(void) {
double x, y; scanf ("%lf%lf", &x, &y);
return Point (x, y);
}
double dot(Point a, Point b) {
return a.x * b.x + a.y * b.y;
}
double cross(Vector A, Vector B) {
return A.x * B.y - A.y * B.x;
}
bool on_seg(Point p, Point a, Point b) {
return dcmp (cross (a - p, b - p)) == 0 && dcmp (dot (a - p, b - p)) < 0;
} /*
凸包边上无点:<= 凸包边上有点:<
*/
vector<Point> convex_hull(vector<Point> ps) {
sort (ps.begin (), ps.end ());
int n = ps.size (), k = 0;
vector<Point> qs (n * 2);
for (int i=0; i<n; ++i) {
while (k > 1 && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0) k--;
qs[k++] = ps[i];
}
for (int t=k, i=n-2; i>=0; --i) {
while (k > t && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0) k--;
qs[k++] = ps[i];
}
qs.resize (k - 1);
return qs;
} int main(void) {
int T; scanf ("%d", &T);
while (T--) {
int n; scanf ("%d", &n);
vector<Point> ps;
for (int i=0; i<n; ++i) ps.push_back (read_point ());
if (n == 1) {
puts ("NO"); continue;
}
vector<Point> qs = convex_hull (ps);
if (qs.size () == n || qs.size () <= 2) {
puts ("NO"); continue;
}
qs.push_back (qs[0]);
int m = qs.size ();
bool flag = false;
for (int i=0; i<m-1; ++i) {
flag = false;
for (int j=0; j<ps.size (); ++j) {
if (ps[j] == qs[i] || ps[j] == qs[i+1]) continue;
if (on_seg (ps[j], qs[i], qs[i+1])) {
flag = true; break;
}
}
if (!flag) break;
}
if (flag) puts ("YES");
else puts ("NO");
} //cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n"; return 0;
}
简单几何(求凸包点数) POJ 1228 Grandpa's Estate的更多相关文章
- POJ 1228 - Grandpa's Estate 稳定凸包
稳定凸包问题 要求每条边上至少有三个点,且对凸包上点数为1,2时要特判 巨坑无比,调了很长时间= = //POJ 1228 //稳定凸包问题,等价于每条边上至少有三个点,但对m = 1(点)和m = ...
- POJ 1228 Grandpa's Estate --深入理解凸包
题意: 判断凸包是否稳定. 解法: 稳定凸包每条边上至少有三个点. 这题就在于求凸包的细节了,求凸包有两种算法: 1.基于水平序的Andrew算法 2.基于极角序的Graham算法 两种算法都有一个类 ...
- POJ 1228 Grandpa's Estate(凸包)
Grandpa's Estate Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11289 Accepted: 3117 ...
- POJ 1228 Grandpa's Estate 凸包 唯一性
LINK 题意:给出一个点集,问能否够构成一个稳定凸包,即加入新点后仍然不变. 思路:对凸包的唯一性判断,对任意边判断是否存在三点及三点以上共线,如果有边不满足条件则NO,注意使用水平序,这样一来共线 ...
- poj - 1228 - Grandpa's Estate
题意:原来一个凸多边形删去一些点后剩n个点,问这个n个点能否确定原来的凸包(1 <= 测试组数t <= 10,1 <= n <= 1000). 题目链接:http://poj. ...
- POJ 1228 Grandpa's Estate(凸包唯一性判断)
Description Being the only living descendant of his grandfather, Kamran the Believer inherited all o ...
- Codeforces 935 简单几何求圆心 DP快速幂求与逆元
A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...
- 简单几何(数学公式+凸包) UVA 11168 Airport
题目传送门 题意:找一条直线,使得其余的点都在直线的同一侧,而且使得到直线的平均距离最短. 分析:训练指南P274,先求凸包,如果每条边都算一边的话,是O (n ^ 2),然而根据公式知直线一般式为A ...
- 【POJ】1228 Grandpa's Estate(凸包)
http://poj.org/problem?id=1228 随便看看就能发现,凸包上的每条边必须满足,有相邻的边和它斜率相同(即共线或凸包上每个点必须一定在三点共线上) 然后愉快敲完凸包+斜率判定, ...
随机推荐
- Bridge 使用
- Coursera台大机器学习课程笔记3 – 机器学习的分类和机器学习的可能性
第三讲比较简单,参考:http://www.cnblogs.com/HappyAngel/p/3466527.html 第四讲很抽象,尤其是第四个视频,目的仍然是为了证明机器学习是可能的,不过这个博主 ...
- NYOJ 5 字符串处理 find()函数应用
http://acm.nyist.net/JudgeOnline/problem.php?pid=5 #include<stdio.h> #include<iostream> ...
- lz4,pigz,gzip 3者比较
一.压缩(1.1)使用gzip进行打包:# time tar -zcf tar1.tar binlog*real 0m48.497suser 0m38.371ssys 0m2.571s (1.2)使用 ...
- Linux时间同步配置方法
由于是在做mongoDB的实验中再一次的遇到了mongos路由节点同步时由于ntp时间的问题导致同步非常的慢.故写了个时间同步的语句===> while :; do rdate -s 192.1 ...
- Sharepoint 2010 创建栏 计算栏
SharePoint 创建栏时,可以添加计算字段, 网上查了查,相关资料如下: http://wenku.baidu.com/view/936239e9b8f67c1cfad6b88f.html ht ...
- springMVC 上传文件
spring mvc(注解)上传文件的简单例子,这有几个需要注意的地方1.form的enctype=”multipart/form-data” 这个是上传文件必须的2.applicationConte ...
- maven An error occurred while filtering resources
转自:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources m ...
- c++标准库中几个常见的数据结构的区别和应用规则
转载自http://www.lifecrunch.biz/archives/202 vector和built-in数组类似,它拥有一段连续的内存空间,并且起始地址不变,因此它能非常好的支持随即存取,即 ...
- iOS CoreData 的级联删除等操作
关于CoreData 的基本操作在网上有一些中文资料,但是这些资料大多没有涉及CoreData的详细操作,只是简单的演示了最基本用法.像级联删除这种最基本的数据库操作都没有提到.今天在网上看到了一些英 ...