泰勒定理:

证明:

《University Calculus》-chaper8-无穷序列和无穷级数-泰勒定理的证明的更多相关文章

  1. 《University Calculus》-chaper8-无穷序列和无穷级数-等比级数

    前言:其实无穷序列和无穷级数和数列{an}以及我们接触微积分就给出的极限概念lim有着紧密的联系,它对于我们在具体的问题当中进行建模和数据分析有着非常重要的作用. 无穷序列: 最简单的一种说法,就是一 ...

  2. Tyvj-TOM的无穷序列

    背景 蛟川书院模拟试题 描述 TOM有一个无穷序列中如下:110100100010000100000.....请你帮助TOM找出在这个无穷序列中指定位置上的数字 输入格式 第一行一个正整数N,表示询问 ...

  3. 《University Calculus》-chaper8-无穷序列和无穷级数-p级数

    Q:定义p级数有如下形式,讨论p级数的敛散性.(p>o) 我们以p = 1作为分界点,因为实践表明这个分界点是最优区分度的.那么下面我们进行分情况讨论. 在这之前,我们有必要先引入一个检验敛散性 ...

  4. 《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式

    写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运 ...

  5. 《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式

    基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识.

  6. 《University Calculus》-chaper8-无穷序列和无穷级数-比值审敛法

    在分析等比级数的过程中,我们发现对于q<1的等比级数是收敛的,它表示级数每一项与它前一项的比值小于1,我们能否将这种方法推广起来用于一般级数的审敛呢? 从极限的定义出发:

  7. 《University Calculus》-chape5-积分法-积分的定义

    这一章节讨论积分的定义以及微积分基本定理. 笔者先前在数学证明专栏中关于高斯定理的证明的开头,给出了一段关于微积分思想的概括,文中提到根据导数(微分)的定义,根据其逆定义来给出积分的定义和计算方法,这 ...

  8. 《University Calculus》-chaper13-向量场中的积分-线积分

    线积分: 基于二重积分和三重积分的引入,我们对于线积分的引入过程将会轻车熟路. 对于一根不均匀密度的铜丝,我们如何求其总质量?如下图. 类似二重积分和三重积分的引入,我们首先基于实际问题给出黎曼和的形 ...

  9. 《University Calculus》-chaper13-多重积分-三重积分的引入

    承接之前对一重积分和二重积分的介绍,这里我们自然的引出三重积分. 在二重积分的引入中,我们曾经埋下过一个小伏笔,二重积分的几何意义是求解一个体积,但是我们仅仅限定在了曲顶柱体的几何体,那么对于完全由曲 ...

随机推荐

  1. C#调用ActiveX控件

    背景:最近项目中需要用到ActiveX控件,项目是在.Net平台下开发的.因此就直接在项目中添加了对ActiveX控件的引用,添加引用成功.在代码中实例化类的实例也没有问题,但在调用其方法或属性时总是 ...

  2. Android学习笔记(SQLite的简单使用)

    1.SQLite介绍 SQLite,是一款轻型的数据库,是遵守ACID的关系型数据库管理系统,它包含在一个相对小的C库中.它是D.RichardHipp建立的公有领域项目.它的设计目标是嵌入式的,而且 ...

  3. 【转】怎样创建一个Xcode插件(Part 2)

    原文:How To Create an Xcode Plugin: Part 2/3 原作者:Derek Selander 译者:@yohunl 译者注:原文使用的是xcode6.3.2,我翻译的时候 ...

  4. iOS-UI控件精讲之UIView

    道虽迩,不行不至:事虽小,不为不成. 相关阅读 1.iOS-UI控件精讲之UIView(本文) 2.iOS-UI控件精讲之UILabel ...待续 UIView是所有UI控件的基类,在布局的时候通常 ...

  5. ios专题 - openSSL

    1  概述 1.1  产生背景 基 于万维网的电子商务和网上银行等新兴应用,极大地方便了人们的日常生活,受到人们的青睐.由于这些应用都需要在网络上进行在线交易,它们对网络通信的安全 性提出了更高的要求 ...

  6. Java小例子(学习整理)-----学生管理系统-控制台版

    1.功能介绍: 首先,这个小案例没有使用数据库,用集合的形式暂时保存数据,做测试! 功能: 增加学生信息 删除学生信息 修改学生信息 查询学生信息:  按照学号(精确查询)  按照姓名(模糊查询) 打 ...

  7. P次方数 英雄会 csdn 高校俱乐部

    题目: 一个整数N,|N| >= 2, 如果存在整数x,使得N = x * x * x... (p个x相乘) =x^p,则称N是p次方数,给定32位内的整数N,求最大的P.例如N=5,输出1,N ...

  8. 说说http请求

    为什么做web前端要了解http标准?因为浏览器要从服务端获取网页,网页也可能将信息再提交给服务器,这其中都有http的连接.web系统既然和http链接有瓜葛,你就必须去了解它.我将从一下几个方面讲 ...

  9. 《wc》-linux命令五分钟系列之十七

    本原创文章属于<Linux大棚>博客,博客地址为http://roclinux.cn.文章作者为rocrocket. 为了防止某些网站的恶性转载,特在每篇文章前加入此信息,还望读者体谅. ...

  10. js隔行变色

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...