Wall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 31199   Accepted: 10521

Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.

The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.

Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了

Source

题目大意:给定n个点和一个距离L,要求围墙距离任意点的距离大于等于L,求出最小围墙长度。
方法一:卷包裹法
思路: 求这n个点的凸包然后再加上以L为半径圆的周长就行了。因为这个总的周长是凸包的长度加上弧的长度,不管弧有多少段,最后一定是对起来一个圆,所以加上一个圆的周长。
我的代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#define EPS 1e-8
#define PI 3.1415926535897932384626433832795
using namespace std;
struct point{
double x, y;
};
const int maxn = ;
point p[maxn];
int process[maxn];
int n, l, k;
bool cmp(const point p1, const point p2)
{
return (p1.y == p2.y && p1.x < p2.x || p1.y < p2.y);
}
int sgn(double x)
{
if (fabs(x) < EPS)
return ;
return x < ? - : ;
}
double get_direction(point p1, point p2, point p3)//p1p3在p1p2左侧的时候返回小于0的数
{
return ((p3.x - p1.x) * (p2.y - p1.y) - (p2.x - p1.x) * (p3.y - p1.y));
}
double get_distance(point p1, point p2)
{
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}
void jarvis()//卷包裹法求凸包
{
int cur = , optimal;//optimal保存最优的点,也就是最外面的点,cur是当前的
process[k++] = ;
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
if (j != cur)
{
optimal = j;
break;
}
}
for (int j = ; j < n; j++)
{
if (j != optimal && cur != j && sgn(get_direction(p[cur], p[j], p[optimal])) <= )
{
if (sgn(get_direction(p[cur], p[j], p[optimal]) == ))
{
if (get_distance(p[cur], p[j]) > get_distance(p[cur], p[optimal]))
optimal = j;
}
else
optimal = j;//严格左侧
}
}
if (optimal == )
break;
process[k++] = optimal;
cur = optimal;
}
}
int main()
{
while (~scanf("%d %d", &n, &l))
{
k = ;
for (int i = ; i < n; i++)
scanf("%lf %lf", &p[i].x, &p[i].y);
sort(p, p + n, cmp);
jarvis();
double ans = ;
for (int i = ; i <= k; i++)
{
ans += get_distance(p[process[i - ]], p[process[i % n]]);
}
ans += * PI * l;
printf("%d\n", (int)(ans + 0.5));
} return ;
}

方法二:Graham-Scan方法

这个方法的主要思想来自极坐标排序,和那个卷包裹法也差不了多少,都是找最外面的那个点,不过这个用的是如果加进来的点右拐的话,就弹出栈顶的点,也就是上一个加进来的点,知道弹到左拐为止,如果左拐直接压栈,这个博客讲的比较好http://www.cnblogs.com/Booble/archive/2011/03/10/1980089.html#2065991,刚开始极角排序的方法理解了,但是平面坐标x,y的一直不理解,因为极角排完序之后一遍for就完事了,很好理解,但是关于平面坐标x, y的方法不太理解,还有就是排序方式也不一样,后来在某篇博客上看到原来一遍只是找到了凸包的一半,虽然是遍历完了,但是,有好多点没有加入,这个它的排序特性所决定的。如果按照y的大小优先排列,那么先找的就是上面的半个凸壳,然后才是下面的凸壳,所以需要两个,这个我是理解了好久了,如果不太理解的话自动动手试试比较好

 用Graham算法来求凸包,平面坐标法
/*************************************************************************
> File Name: poj_1113_graham_coordinate.cpp
> Author: Howe_Young
> Mail: 1013410795@qq.com
> Created Time: 2015年04月15日 星期三 21时32分07秒
************************************************************************/
/*平面坐标法求凸包*/
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <cstdio>
#define EPS 1e-8
#define PI 3.1415926535
using namespace std;
typedef long long LL;
struct point{
double x, y;
};
const int maxn = ;
point p[maxn];
int n, l, top, convex[maxn];//convex当做栈来使用
bool cmp(const point p1, const point p2)//比较函数,不用极角,用坐标(x, y);
{
return ((p1.y == p2.y && p1.x < p2.x) || p1.y < p2.y);
}
int sgn(double x)
{
if (fabs(x) < EPS)
return ;
return x < ? - : ;
}
double get_direction(point p1, point p2, point p3)
{
return ((p3.x - p1.x) * (p2.y - p1.y) - (p2.x - p1.x) * (p3.y - p1.y));
}
double get_distance(point p1, point p2)
{
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}
void Graham()
{
top = ;
//找出凸包的下半部分凸壳
for (int i = ; i < n; i++)
{
while (top > && sgn(get_direction(p[convex[top - ]], p[convex[top - ]], p[i])) > )
top--;
convex[top++] = i;
}
int tmp = top;
//找出凸包的上半部分,因为我的比较函数是写的y优先的,所以上下部分,当然也可以以x优先排序,这时候就是左右部分了
for (int i = n - ; i >= ; i--)
{
while (top > tmp && sgn(get_direction(p[convex[top - ]], p[convex[top - ]], p[i])) > )
top--;
convex[top++] = i;
}
}
int main()
{
while (~scanf("%d %d", &n, &l))
{
for (int i = ; i < n; i++)
{
scanf("%lf %lf", &p[i].x, &p[i].y);
}
sort(p, p + n, cmp);
Graham();
double ans = ;
for (int i = ; i < top - ; i++)
{
ans += get_distance(p[convex[i]], p[convex[i + ]]);
}
ans += * PI * l;
printf("%d\n", (int)(ans + 0.5));
}
return ;
}

Graham算法,极角排序方法

这个方法是真的按照极角排序来做得,只用一遍的for就行了。只不过排序的时候稍微麻烦点,其他的挺好理解的

/*极角排序方法*/
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <cstdio>
#define EPS 1e-8
#define PI 3.1415926535
#define INF 99999999
using namespace std;
struct point{
double x, y;
};
const int maxn = ;
point p[maxn], pp;//pp保存最小的按个点,就是最左下角的
int n, l, top, convex[maxn];//convex栈
int sgn(double x)
{
if (fabs(x) < EPS)
return ;
return x < ? - : ;
}
double get_direction(point p1, point p2, point p3)
{
return ((p3.x - p1.x) * (p2.y - p1.y) - (p2.x - p1.x) * (p3.y - p1.y));
}
double get_distance(point p1, point p2)
{
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}
bool cmp(const point p1, const point p2)//极角排序比较函数,以最左下角的点为参考点
{
if (sgn(get_direction(pp, p1, p2)) < )
return true;
if (sgn(get_direction(pp, p1, p2)) == && get_distance(pp, p1) < get_distance(pp, p2))//同样的极角,距离小的排在距离大的前头
return true;
return false;
}
void graham()//Graham-Scan算法
{
sort(p, p + n, cmp);//先排序
top = ;
if (n == )
return;
convex[] = ;
if (n == )
return;
convex[] = ;
for (int i = ; i < n; i++)//找剩下的n - 2个元素
{
while (top > && sgn(get_direction(p[convex[top - ]], p[convex[top]], p[i])) >= )//如果不满足左拐的条件,弹栈
top--;
convex[++top] = i;//将这个点压到栈中
}
}
int main()
{
while (~scanf("%d %d", &n, &l))
{
p.x = pp.y = INF;
for (int i = ; i < n; i++)
{
scanf("%lf %lf", &p[i].x, &p[i].y);
if (p[i].x < pp.x || (p[i].x == pp.x && p[i].y < pp.y))
{
pp.x = p[i].x; pp.y = p[i].y;
}
}
graham();
double ans = ;
++top;
for (int i = ; i < top; i++)
{
ans += get_distance(p[convex[i]], p[convex[(i + )%top]]);
}
ans += * PI * l;
printf("%d\n", (int)(ans + 0.5));
}
return ;
}

POJ 1113 Wall 求凸包的两种方法的更多相关文章

  1. POJ 1113 Wall 求凸包

    http://poj.org/problem?id=1113 不多说...凸包网上解法很多,这个是用graham的极角排序,也就是算导上的那个解法 其实其他方法随便乱搞都行...我只是测一下模板... ...

  2. Python3求笛卡尔积的两种方法

    [本文出自天外归云的博客园] 电影异次元杀阵三部曲中密室线索反复出现笛卡尔积的运用.百度百科: 笛卡尔乘积是指在数学中,两个集合X和Y的笛卡尓积(Cartesian product),又称直积,表示为 ...

  3. Wall - POJ 1113(求凸包)

    题目大意:给N个点,然后要修建一个围墙把所有的点都包裹起来,但是要求围墙距离所有的点的最小距离是L,求出来围墙的长度. 分析:如果没有最小距离这个条件那么很容易看出来是一个凸包,然后在加上一个最小距离 ...

  4. POJ 1113 Wall【凸包周长】

    题目: http://poj.org/problem?id=1113 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  5. POJ 1113 Wall (凸包)

    Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...

  6. POJ 1113 Wall(计算几何の凸包)

    Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...

  7. 区间求mex的两种方法

    区间求mex的两种方法 1.莫队+分块/莫队+二分+树状数组 2.线段树 预处理1-i的sg值(用一个vis数组,一个cur指针) 预处理nxt数组(a[nxt[i]]=a[i]) 枚举左端点l, 考 ...

  8. POJ 1113 Wall(凸包)

    [题目链接] http://poj.org/problem?id=1113 [题目大意] 给出一个城堡,要求求出距城堡距离大于L的地方建围墙将城堡围起来求所要围墙的长度 [题解] 画图易得答案为凸包的 ...

  9. 题解报告:poj 1113 Wall(凸包)

    Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...

随机推荐

  1. PHP常用函数和常量

    PHP常用系统常量 __FILE__ 文件的完整路径和文件名.如果用在被包含文件中,则返回被包含的文件名.自 PHP 4.0.2 起,总是包含一个绝对路径(如果是符号连接,则是解析后的绝对路径),而在 ...

  2. django笔记1

    最近在博客园看来越来越多的关于python的文章,我看到时感觉特别的好,因为我也是一个特别喜欢python这门语言,喜欢python的简洁.干净,简洁而不失强大. 最近在学习django的Model模 ...

  3. Cocos2d-x中Vector使用

    1.创建Vector对象 Vector().默认的构造函数. Vector(ssize_t capacity).创建Vector对象,并设置容量. Vector(const Vector<T&g ...

  4. Frame与启动流程

    1. frame与bounds的区别: frame是从屏幕的左上角开始计算位置,而bounds是从新添加view左上角作为(0,0)开始计算 bounds是以自身为参考系,所以左上角的点为原点 cen ...

  5. BZOJ 1036 树的统计

    Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. Q ...

  6. Java中接口与实例化

    一.问题引入         前两天学代理模式的时候想到的,接口可不可以new呢?         接口是特殊的抽象类,接口的方法都默认为  public  abstract  的... 抽象的方法不 ...

  7. 【转】Chrome保存mhtml网页文件的方法 – 无需任何插件,完美!

    原文网址:http://www.ihacksoft.com/chrome-save-mht.html 在 Chrome 地址栏中键入“chrome://flags”,回车,这是一个 Chrome 的功 ...

  8. QTP自传之web常用对象

    随着科技的进步,“下载-安装-运行”这经典的三步曲已离我们远去.web应用的高速发展,改变了我们的思维和生活习惯,同时也使web方面的自动化测试越来越重要.今天,介绍一下我对web对象的识别,为以后的 ...

  9. HDOJ(HDU) 2178 猜数字(题意有点难理解、、、)

    Problem Description A有1数m,B来猜.B每猜一次,A就说"太大","太小"或"对了" . 问B猜n次可以猜到的最大数. ...

  10. 自定义WCF的配置文件

    原文地址:http://www.cnblogs.com/shanyou/archive/2008/12/02/1346298.html WCF的承载既可以通过编码实现,也能够通过配置实现.而且使用配置 ...