目标检测YOLO进化史之yolov1
yolov3在目标检测领域可以算得上是state-of-art级别的了,在实时性和准确性上都有很好的保证.yolo也不是一开始就达到了这么好的效果,本身也是经历了不断地演进的.
yolov1
测试图片

yolov1有个基本的思想,就是将图片划分为S*S个小格grid,每个grid负责一个目标.上图里的黄色框就是grid.蓝色框就是预测的object.蓝色点是object的中心,位于黄色框内.


每个grid只预测一个目标,这个就造成了yolo的一个缺陷,当多个目标的中心都落在同一个grid cell里的时候,却只能预测出来一个.比如上图左下角有9个圣诞老人,但是只预测出来5个.

反映到模型上,也就是说输入一个448*448*3图片,经过不断卷积,输出一个7*7*30的tensor. 这里的7*7就对应于上面说到的S*S.

那么这里的30怎么来的呢? 每一个grid cell预测2个框出来,每个框对应5个值,(x,y,w,h)和一个box confidence score.box confidence score反映了预测出来的box含有目标的可能性以及这个预测的box的准确性. yolov1预测出20个类别的概率. 所以30 = 2*5 + 20
我们用B指代每个cell预测出B个box,C指代每个cell预测出C个类别的概率.那么yolo的输出的tensor的shape则为(S,S,Bx5+C)
这就是yolo的核心思想了,构建一个CNN网络,得到一个(7,7,30)的tensor.

这样的话就得到了7*7*2个box,我们只保留box confidence score>某个值的box作为我们最终的预测box.

loss
损失函数分为3个部分
- box位置错误
- confidence错误(box确实包含目标的可能性错误)
- 类别概率错误
其实也就是衡量我们的这些预测值(x,y,w,h,confidence,classp1,classp2....)和真实值的差异
首先,我们预测出了B个box,我们只会用其中一个去计算loss.我们选取与ground-truth box的IOU最大的作为我们计算loss的box.ground-truth box怎么来,因为我们事先已经把数据标注好了,我们当然可以找到ground-truth box的中心位于某个grid cell内,如果有多个ground-truth box的中心都位于当前grid cell内,怎么办?计算每一个predict box和每一个ground-truth box的IOU,选取iou最大的作为相应的predict box,ground-truth box.这个方式带来的一个问题就是前面圣诞老人那个图说到的,当多个目标很密集,他们的中心都落在了同一个grid cell内的时候,yolov1只能检测出其中之一.
loss函数如下图所示:

loss函数的设计基于以下几种考虑
- 每一种loss都给相同的权重是不合适的,对于box位置错误给更多的权重,
目标检测YOLO进化史之yolov1的更多相关文章
- 小白也能弄得懂的目标检测YOLO系列之YOLOv1网络训练
上期给大家介绍了YOLO模型的检测系统和具体实现,YOLO是如何进行目标定位和目标分类的,这期主要给大家介绍YOLO是如何进行网络训练的,话不多说,马上开始! 前言: 输入图片首先被分成S*S个网格c ...
- 小白也能弄懂的目标检测YOLO系列之YOLOV1 - 第二期
上期给大家展示了用VisDrone数据集训练pytorch版YOLOV3模型的效果,介绍了什么是目标检测.目标检测目前比较流行的检测算法和效果比较以及YOLO的进化史,这期我们来讲解YOLO最原始V1 ...
- [目标检测]YOLO原理
1 YOLO 创新点: 端到端训练及推断 + 改革区域建议框式目标检测框架 + 实时目标检测 1.1 创新点 (1) 改革了区域建议框式检测框架: RCNN系列均需要生成建议框,在建议框上进行分类与回 ...
- 目标检测(五)YOLOv1—You Only Look Once:Unified,Real-Time Object Detection
之前的目标检测算法大都采用proposals+classifier的做法(proposal提供位置信息,分类器提供类别信息),虽然精度很高,但是速度比较慢,也可能无法进行end-to-end训练.而该 ...
- 第四节,目标检测---YOLO系列
1.R-CNN回顾 适应全卷积化CNN结构,提出全卷积化设计 共享ResNet的所有卷积层 引入变换敏感性(Translation variance) 位置敏感分值图(Position-sensiti ...
- 目标检测-yolo
论文下载:http://arxiv.org/abs/1506.02640 代码下载:https://github.com/pjreddie/darknet 1.创新点 端到端训练及推断 + 改革区域建 ...
- 目标检测YOLO算法-学习笔记
算法发展及对比: 17年底,mask-R CNN YOLO YOLO最大的优势就是快 原论文中流程,可以检测出20类物体. 红色网格-张量,在这样一个1×30的张量中保存的数据 横纵坐标中心点缩放到0 ...
- 【目标检测】YOLO:
PPT 可以说是讲得相当之清楚了... deepsystems.io 中文翻译: https://zhuanlan.zhihu.com/p/24916786 图解YOLO YOLO核心思想:从R-CN ...
- 第三十五节,目标检测之YOLO算法详解
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object de ...
随机推荐
- Uncaught Error: Bootstrap dropdown require Popper.js
Bootstrap 要求Popper.js 如果安装了Popper.js还报错,肯定就是Popper的问题 https://cdn.bootcss.com/popper.js/1.12.5/umd/p ...
- Golang 高效实践之defer、panic、recover实践
前言 我们知道Golang处理异常是用error返回的方式,然后调用方根据error的值走不同的处理逻辑.但是,如果程序触发其他的严重异常,比如说数组越界,程序就要直接崩溃.Golang有没有一种异常 ...
- python 面向对象编程 - 小游戏
面向对象写的小游戏 欢迎玩耍 class Omnicience: camp = 'Omniscience' def __init__(self, name, atk=100, hp=1000, mp= ...
- C#2.0新增功能01 分布类与分部方法
连载目录 [已更新最新开发文章,点击查看详细] 分部类型 拆分一个类.一个结构.一个接口或一个方法的定义到两个或更多的文件中, 每个源文件包含类型或方法定义的一部分,编译应用程序时将把所有部分组 ...
- python执行unittest界面设置
执行单元测试时,系统会自动添加unittest in...的执行服务器. 执行时unittest in...的执行服务器在界面右上方可以看到,且执行结果为左侧框和右侧统计结果. 如果没有,会导致测试结 ...
- Keil debug command SAVE 命令保存文件的解析
简介 使用 Keil debug 很方便,把内存中的一段区域 dump 出来也很方便,例如使用命令 SAVE filepath startAddr, endAddr, typeCode .但是要查看 ...
- Python中文本文件读写操作的编码问题
Python中文本文件读写的编码问题 编码(encode): 我们输入的任何字符想要以文件(如.txt)的形式保存在计算机的硬盘上, 必须先经按照一定的规则编成计算机认识的二进制后,才能存在电脑硬盘上 ...
- 前端jQuery学习(一)
把最近学习的前端框架jQuery整理一下.你可能听说过jQuery,因为他是JavaScript世界中使用最广泛的一个库. 江湖传言,全世界大约有80~90%的网站直接或间接地使用了jQuery.鉴于 ...
- ListView 控件总结
1.ListView类 1.常用的基本属性: (1)FullRowSelect:设置是否行选择模式.(默认为false) 提示:只有在Details视图该属性才有 ...
- 关于java飞机躲炮弹的一些对象说明(带源码)
1.飞机躲炮弹的各种实体类都需要一个画笔将他们画出来 (GameObject) import java.awt.*; public void drawSelf(Graphics g){ g.drawI ...
- 小白也能弄得懂的目标检测YOLO系列之YOLOv1网络训练