查找树ADT--二叉查找树
二叉树的一个重要应用是它们在查找中的使用。
二叉查找树的性质:对于树中的每个节点X,它的左子树中所有项的值小于X中的项,而它的右子树中所有项的值大于X中的项。这意味着该树所有的元素可以用某种一致的方式排序。
二叉查找树的平均深度是O(logN)。二叉查找树要求所有的项都能够排序。树中的两项总可以使用Comparable接口中的compareTo方法比较。
ADT的声明:
struct TreeNode;
typedef struct TreeNode *Position;
typedef struct TreeNode *SearchTree;
SearchTree MakeEmpty(SearchTree T);
Position Find(ElementType X, SearchTree T);
Position FindMax(SearchTree T);
Position FindMin(SearchTree T);
SearchTree Insert(ElementType X, SearchTree T);
SearchTree Delete(ElementType X, SearchTree T);
ElementType Retrieve(Position P);
struct TreeNode{
ElementType Element;
SearchTree Left;
SearchTree Right;
};
1、MakeEmpty的实现
SearchTree MakeEmpty(SearchTree T){
if(T != NULL){
MakeEmpty(T->Left);
MakeEmpty(T->Right);
free(T);
}
return NULL;
}
2、Find的实现
Position Find(ElementType X, SearchTree T){
if(T == NULL)
return NULL;
else if(X < T->Element)
return Find(X, T->Left);
else if(X > T->Element)
return Find(X, T->Right);
else
return T;
}
3、FindMax和FindMin的实现(一个递归 一个非递归)
Position FindMin(SearchTree T){
if(T == NULL)
return NULL;
else if(T->Left == NULL)
return T;
else
return FindMin(T->Left);
}
Position FindMax(SearchTree T){
if(T != NULL)
while(T->Right != NULL)
T = T->Right;
return T;
}
4、Insert的实现
SearchTree Insert(ElementType X, SearchTree T){
if(T == NULL){
T = (SearchTree)malloc(sizeof(struct TreeNode));
T->Element = X;
T->Left = T->Right = NULL;
}
else if(X < T->Element)
T->Left = Insert(X, T->Left);
else if(X > T->Element)
T->Right = Insert(X, T->Right);
// Else X is in the tree already, we'll do nothing!
return T;
}
5、Delete的实现
SearchTree Delete(ElementType X, SearchTree T){
Position TmpCell;
if(T == NULL)
printf("Element Not Found\n");
else if(X < T->Element)
T->Left = Delete(X, T->Left);
else if(X > T->Element)
T->Right = Delete(X, T->Right);
else if(T->Left && T->Right){
TmpCell = FindMin(T->Right);
T->Element = TmpCell->Element;
T->Right = Delete(TmpCell->Element, T->Right);
}
else{
TmpCell = T;
if(!(T->Left))
T = T->Right;
else if(!(T->Right))
T = T->Left;
free(TmpCell);
}
return T;
}
查找树ADT--二叉查找树的更多相关文章
- 查找树ADT——二叉查找树
二叉查找树:对于树中的每个节点X,它的左子数种所有关键字值小于X的关键字,而它的右子树种所有关键字值大于X的关键字值. /* 二叉查找树声明 */ #ifndef _TREE_H struct Tre ...
- 查找树ADT——二叉搜索树
在以下讨论中,虽然任意复杂的关键字都是允许的,但为了简单起见,假设它们都是整数,并且所有的关键字是互异的. 总概 使二叉树成为二叉查找树的性质是,对于树中的每个节点X,它的左子树中所有关键字值小于 ...
- 查找树ADT
通过二叉查找树实现排序的例程 /** * 无论排序的对象是什么,都要实现Comparable接口 * * @param <T> */ public class BinaryNode< ...
- 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...
- HTTP协议漫谈 C#实现图(Graph) C#实现二叉查找树 浅谈进程同步和互斥的概念 C#实现平衡多路查找树(B树)
HTTP协议漫谈 简介 园子里已经有不少介绍HTTP的的好文章.对HTTP的一些细节介绍的比较好,所以本篇文章不会对HTTP的细节进行深究,而是从够高和更结构化的角度将HTTP协议的元素进行分类讲 ...
- 二叉查找树、平衡二叉树(AVLTree)、平衡多路查找树(B-Tree),B+树
B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引. B+树中的B代表平衡(balance),而不是二叉(binary),因为B+树是从最早的平衡二叉树演化而来的. 在 ...
- 浅谈算法和数据结构: 十 平衡查找树之B树
前面讲解了平衡查找树中的2-3树以及其实现红黑树.2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key. 维基百科对B树的定义为“在计算机科学中,B树(B-tree)是一种 ...
- 数据结构:JAVA_二叉数查找树基本实现(中)
数据结构:二叉数查找树基本实现(JAVA语言版) 1.写在前面 二叉查找树得以广泛应用的一个重要原因是它能保持键的有序性,因此我们可以把它作为实现有序符号表API中的众多方法的基础. 也就是说我们构建 ...
- 转 浅谈算法和数据结构: 十 平衡查找树之B树
前面讲解了平衡查找树中的2-3树以及其实现红黑树.2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key. 维基百科对B树的定义为"在计算机科学中,B树(B-tre ...
- java实现二叉树查找树
二叉树(binary)是一种特殊的树.二叉树的每个节点最多只能有2个子节点: 二叉树 由于二叉树的子节点数目确定,所以可以直接采用上图方式在内存中实现.每个节点有一个左子节点(left childre ...
随机推荐
- CSS学习笔记-背景属性
一.背景尺寸属性: 1.含义: 背景尺寸属性是CSS3中新增的一个属性,专门用于设置背景图片大小 2.格式: 1.1具体像素: backgro ...
- 常用adb命令总结
前言 很早就想整理一下自己平时常用的一些adb命令,不仅为了便于以后查找,而且整理的过程自己又重新复习了一遍,但是当我开始在度娘一搜的时候,发现很多人已经写的非常详细了,尤其是当我发现了这篇adb概括 ...
- curl 模拟https协议请求
在原有基础上再添加设置下面两个参数: curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false); // 跳过证书检查 curl_setopt($ch, CURLO ...
- bay——RAC_ASM ORA-15001 diskgroup DATA does not exist or is not mounted.docx
RAC ORA-15001: diskgroup "DATA" does not exist or is not mounted Oracle数据库识别不了存储Diskgroup ...
- layUI学习第三日:layUI模块化开发
layui 定义为「经典模块化」,具备早前 AMD 的影子,又并非受限于 CommonJS 的那些条条框框, BootStrap 的不同在于:layui 糅合了自身对经典模块化的理解. 除了 layu ...
- DFS(四):剪枝策略
顾名思义,剪枝就是通过一些判断,剪掉搜索树上不必要的子树.在采用DFS算法搜索时,有时候我们会发现某个结点对应的子树的状态都不是我们要的结果,这时候我们没必要对这个分支进行搜索,砍掉这个子树,就是剪枝 ...
- 使用JaCoCo Maven插件创建代码覆盖率报告
这篇博客文章描述了我们如何使用JaCoCo Maven插件为单元和集成测试创建代码覆盖率报告. 我们的构建要求如下: 运行测试时,我们的构建必须为单元测试和集成测试创建代码覆盖率报告. 代码覆盖率报告 ...
- 列举常见国内外做服务器与存储的IT厂家
列举常见国内外做服务器与存储的IT厂家 联想.浪潮.曙光.同有飞骥.迪菲特.宝德.星盈.元谷.威联通.群晖.忆捷.天敏等 华为.华三.戴尔.神州云科.同有.谷数,都是比较大的厂商 HDS(昆仑联通). ...
- java高并发系列 - 第13天:JUC中的Condition对象
本文目标: synchronized中实现线程等待和唤醒 Condition简介及常用方法介绍及相关示例 使用Condition实现生产者消费者 使用Condition实现同步阻塞队列 Object对 ...
- fastjson的值过滤器ValueFilter
https://blog.csdn.net/linyifan_/article/details/83060408 原创林天乐 发布于2018-10-15 16:20:25 阅读数 1462 收藏 展 ...