本文将简单介绍Python中的一个轻量级搜索工具Whoosh,并给出相应的使用示例代码。

Whoosh简介

  Whoosh由Matt Chaput创建,它一开始是一个为Houdini 3D动画软件包的在线文档提供简单、快速的搜索服务工具,之后便慢慢成为一个成熟的搜索解决工具并已开源。

  Whoosh纯由Python编写而成,是一个灵活的,方便的,轻量级的搜索引擎工具,现在同时支持Python2、3,其优点如下:

  • Whoosh纯由Python编写而成,但很快,只需要Python环境即可,不需要编译器;
  • 默认使用 Okapi BM25F排序算法,也支持其他排序算法;
  • 相比于其他搜索引擎,Whoosh会创建更小的index文件;
  • Whoosh中的index文件编码必须是unicode;
  • Whoosh可以储存任意的Python对象。

  Whoosh的官方介绍网站为:https://whoosh.readthedocs.io/en/latest/intro.html 。相比于ElasticSearch或者Solr等成熟的搜索引擎工具,Whoosh显得更轻便,操作更简单,可以考虑在小型的搜索项目中使用。

Index & query

  对于熟悉ES的人来说,搜索的两个重要的方面为mapping和query,也就是索引的构建以及查询,背后是复杂的索引储存、query解析以及排序算法等。如果你有ES方面的经验,那么,对于Whoosh是十分容易上手的。

  按照笔者的理解以及Whoosh的官方文档,Whoosh的入门使用主要是index以及query。搜索引擎的强大功能之一在于它能够提供全文检索,这依赖于排序算法,比如BM25,也依赖于我们怎样储存字段。因此,index作为名词时,是指字段的索引,index作为动词时,是指建立字段的索引。而query会将我们需要查询的语句,通过排序算法,给出合理的搜索结果。

  关于Whoosh的使用,在官文文档中已经给出了详细的说明,笔者在这里只给出一个简单的例子,来说明Whoosh如何能方便地提升我们的搜索体检。

示例代码

数据

  本项目的示例数据为poem.csv,下图为该数据集的前十行:

字段

  根据数据集的特征,我们创建四个字段(fields):title, dynasty, poet, content。创建的代码如下:

# -*- coding: utf-8 -*-
import os
from whoosh.index import create_in
from whoosh.fields import *
from jieba.analyse import ChineseAnalyzer
import json # 创建schema, stored为True表示能够被检索
schema = Schema(title=TEXT(stored=True, analyzer=ChineseAnalyzer()),
dynasty=ID(stored=True),
poet=ID(stored=True),
content=TEXT(stored=True, analyzer=ChineseAnalyzer())
)

其中,ID只能为一个单元值,不能分割为若干个词,常用于文件路径、URL、日期、分类;

TEXT文件的文本内容,建立文本的索引并存储,支持词汇搜索;Analyzer选择结巴中文分词器。

创建索引文件

  接着,我们需要创建索引文件。我们利用程序先解析poem.csv文件,并将它转化为index,写入到indexdir目录下。Python代码如下:

# 解析poem.csv文件
with open('poem.csv', 'r', encoding='utf-8') as f:
texts = [_.strip().split(',') for _ in f.readlines() if len(_.strip().split(',')) == 4] # 存储schema信息至indexdir目录
indexdir = 'indexdir/'
if not os.path.exists(indexdir):
os.mkdir(indexdir)
ix = create_in(indexdir, schema) # 按照schema定义信息,增加需要建立索引的文档
writer = ix.writer()
for i in range(1, len(texts)):
title, dynasty, poet, content = texts[i]
writer.add_document(title=title, dynasty=dynasty, poet=poet, content=content)
writer.commit()

index创建成功后,会生成indexdir目录,里面含有上述poem.csv数据的各个字段的索引文件。

查询

  index创建成功后,我们就利用进行查询。

  比如我们想要查询content中含有明月的诗句,可以输入以下代码:

# 创建一个检索器
searcher = ix.searcher() # 检索content中出现'明月'的文档
results = searcher.find("content", "明月")
print('一共发现%d份文档。' % len(results))
for i in range(min(10, len(results))):
print(json.dumps(results[i].fields(), ensure_ascii=False))

输出结果如下:

一共发现44份文档。
前10份文档如下:
{"content": "床前明月光,疑是地上霜。举头望明月,低头思故乡。", "dynasty": "唐代", "poet": "李白 ", "title": "静夜思"}
{"content": "边草,边草,边草尽来兵老。山南山北雪晴,千里万里月明。明月,明月,胡笳一声愁绝。", "dynasty": "唐代", "poet": "戴叔伦 ", "title": "调笑令·边草"}
{"content": "独坐幽篁里,弹琴复长啸。深林人不知,明月来相照。", "dynasty": "唐代", "poet": "王维 ", "title": "竹里馆"}
{"content": "汉江明月照归人,万里秋风一叶身。休把客衣轻浣濯,此中犹有帝京尘。", "dynasty": "明代", "poet": "边贡 ", "title": "重赠吴国宾"}
{"content": "秦时明月汉时关,万里长征人未还。但使龙城飞将在,不教胡马度阴山。", "dynasty": "唐代", "poet": "王昌龄 ", "title": "出塞二首·其一"}
{"content": "京口瓜洲一水间,钟山只隔数重山。春风又绿江南岸,明月何时照我还?", "dynasty": "宋代", "poet": "王安石 ", "title": "泊船瓜洲"}
{"content": "四顾山光接水光,凭栏十里芰荷香。清风明月无人管,并作南楼一味凉。", "dynasty": "宋代", "poet": "黄庭坚 ", "title": "鄂州南楼书事"}
{"content": "青山隐隐水迢迢,秋尽江南草未凋。二十四桥明月夜,玉人何处教吹箫?", "dynasty": "唐代", "poet": "杜牧 ", "title": "寄扬州韩绰判官"}
{"content": "露气寒光集,微阳下楚丘。猿啼洞庭树,人在木兰舟。广泽生明月,苍山夹乱流。云中君不见,竟夕自悲秋。", "dynasty": "唐代", "poet": "马戴 ", "title": "楚江怀古三首·其一"}
{"content": "海上生明月,天涯共此时。情人怨遥夜,竟夕起相思。灭烛怜光满,披衣觉露滋。不堪盈手赠,还寝梦佳期。", "dynasty": "唐代", "poet": "张九龄 ", "title": "望月怀远 / 望月怀古"}

本次分享到此到此结束,感谢大家阅读~

Python之利用Whoosh搭建轻量级搜索的更多相关文章

  1. 利用SOLR搭建企业搜索平台 之——MultiCore

    Solr Multicore 是 solr 1.3 的新特性.其目是一个solr实例,可以有多个搜索应用. 下面着手来将solr给出的一个example跑出来.这篇文章是基于<利用SOLR搭建企 ...

  2. 利用SOLR搭建企业搜索平台 之——solr配置solrconfig.xml

    来源:http://blog.csdn.net/zx13525079024/article/details/25310781 solrconfig.xml配置文件主要定义了SOLR的一些处理规则,包括 ...

  3. 利用SOLR搭建企业搜索平台 之——模式配置Schema.xml

    来源:http://blog.csdn.net/awj3584/article/details/16963525 schema.xml这个配置文件可以在你下载solr包的安装解压目录的\solr\ex ...

  4. 利用SOLR搭建企业搜索平台 之——Solr索引基本操作

    来源:http://blog.csdn.net/zx13525079024/article/details/25367239 我们来看下通过界面来操作SOLR,包括SOLR索引的添加,查询等基本操作. ...

  5. 利用SOLR搭建企业搜索平台 之——solr的查询语法

      1. 首先假设我的数据里fields有:name, tel, address 预设的搜寻是name这个字段, 如果要搜寻的数据刚好就是 name 这个字段,就不需要指定搜寻字段名称. 2. 查询规 ...

  6. 利用SOLR搭建企业搜索平台 之——配置文件

    运行solr是个很简单的事,如何让solr高效运行你的项目,这个就不容易了.要考虑的因素太多.这里很重要一个就是对solr的配置要了解.懂得配置文件每个配置项的含义,这样操作起来就会如鱼得水! 在so ...

  7. 利用SOLR搭建企业搜索平台 之——运行solr

    来源:http://blog.csdn.net/zx13525079024/article/details/24806131 本节主要介绍Solr的安装,其实Solr不需要安装.直接下载就可以了    ...

  8. Python - 利用flask搭建一个共享服务器

    零.概述 我利用flask搭建了一个简易的共享服务器,分享给大家 一.python代码 import os import time from flask import Flask,render_tem ...

  9. Kafka1 利用虚拟机搭建自己的Kafka集群

    前言:       上周末自己学习了一下Kafka,参考网上的文章,学习过程中还是比较顺利的,遇到的一些问题最终也都解决了,现在将学习的过程记录与此,供以后自己查阅,如果能帮助到其他人,自然是更好的. ...

随机推荐

  1. HTTP 协议漫谈

    转载出处:HTTP 协议漫谈 简介 网络上已经有不少介绍 HTTP 的好文章,对HTTP的一些细节介绍的比较好,所以本篇文章不会对 HTTP 的细节进行深究,而是从够高和更结构化的角度将 HTTP 协 ...

  2. D^3ctf两道 pwn

    这次 的D^3ctf 又是给吊打 难顶... 所以题都是赛后解出来的,在这感谢Peanuts师傅 unprintableV 看看保护: 看看伪代码,其实代码很少 void __cdecl menu() ...

  3. C语言之路

    C 简介 C 语言是一种通用的高级语言,最初是由丹尼斯·里奇在贝尔实验室为开发 UNIX 操作系统而设计的.C 语言最开始是于 1972 年在 DEC PDP-11 计算机上被首次实现. 在 1978 ...

  4. Java从零开始(前篇)

    前篇 自述 本人大三通信专业,咸鱼一枚,对专业所学傅里叶变换等实在提不起兴趣. 幸好略学过c系列语言,但也浅尝辄止,浑浑噩噩,深入之后被指针弄地晕头转向. 想在毕业后转行计算机,于是我下定决心从零开始 ...

  5. ES6扩展运算符...

    对象的扩展运算符理解对象的扩展运算符其实很简单,只要记住一句话就可以: 对象中的扩展运算符(...)用于取出参数对象中的所有可遍历属性,拷贝到当前对象之中 let bar = { a: 1, b: 2 ...

  6. github下载历史版本--xdd

    第一步 打开一个仓库,可以看到此时在主分支下,点击1位置查看历史版本 第二步 现在可以查看到所有的版本(提交)信息,单击2位置进入该版本 第三步 单击3位置浏览并打开该版本 第四步 进入该版本之后,可 ...

  7. C#面向对象--命名空间

    一.在C#中,使用命名空间(Namespace)可以帮助控制自定义类型的作用范围,同时对大量的类型进行组织:使用namespace关键字声明命名空间,命名空间可以嵌套使用: namespace MyN ...

  8. PHP开发各种规范,面试秘籍!

    基本约定 源文件 代码使用<?php开头,忽略闭合标签?> 文件格式必须是无BOM UTF-8格式 一个文件只声明一种类型,如class和interface不能混写在一个源文件中 缩进 使 ...

  9. 插槽在父组件和子组件间的使用(vue3.0推荐)

    子组件: 父组件: 插槽在父组件和子组件间的使用(vue3.0推荐):在外面加一个template模板

  10. 小白的springboot之路(七)、事务支持

    0-前言 事务管理对于企业级应用来说必不可少,用来确保数据的完整性和一致性: 1-开启事务 spring boot支持编程式事务和声明式事务,用声明式事务即可: spring boot开启事务非常简单 ...