题面

题目保证有解即纸牌总数能被人数整除(N|T)每个人持有纸牌a[1]...a[m],我们可以先考虑第一个人

1.若a[1]>T/M,则第一个人需要给第二个人c[1]-T/M张纸牌,即把c[2]加上c[1]-T/M。

2.若a[1]<T/M,则第一个人需要拿第二个人c[1]-T/M张纸牌,即把c[2]减去T/M-c[1]。

我们可以按照这种方法依次考虑2~M个人。即使某个时刻有某个c[i]被减为负数也没有关系,因为接下来c[i]就会从c[i+1]处拿纸牌。

代码

#include<bits/stdc++.h>
using namespace std;
int m,a[105],T,ans;
int main(){
scanf("%d",&m);
for(int i=1;i<=m;++i){
scanf("%d",&a[i]);
T+=a[i];
}
T/=m;
for(int i=1;i<=m;++i){
a[i]-=T;
}
for(int i=1;i<=m;++i){
if(a[i]!=0){
a[i+1]+=a[i];
ans++;
}
}
printf("%d",ans);
return 0;
}

在此问题上还可进行一个拓展,若每次只能拿一张牌,思路也跟上面相同,最小步数就是

\(\sum_{i=1}^M\) \(\mid\)i*T/M-G[i]\(\mid\) ,其中G是a的前缀和,即 G[i]= \(\sum_{j=1}^i\) a[i]

其中的含义是每个“前缀”最初有G[i]张纸牌,最后会有i*T/M张纸牌。

如果我们设A[i]=a[i]-T/M,即一开始就让每个人手中的纸牌数都减去T/M,并且最终让每个人手里都只有0张纸牌,答案依然不变,就是

\(\sum_{i=1}^M\) \(\mid\)S[i]\(\mid\)其中S是A的前缀和即 S[i]=\(\sum_{j=1}^i\)A[i]

NOIP2002[提高组] 均分纸牌 题解的更多相关文章

  1. NOIP2002 提高组

    [NOIP2002] 提高组 T1.均分纸牌 算法:贪心(模拟) [分析]: 1.简化 2.过滤 3.辩证法  详见课件的例7 还有一种类似的思路是:求出平均值后,i←1 to n-1扫描,若a[i] ...

  2. noip2002提高组题解

    再次280滚粗.今天早上有点事情,所以做题的时候一直心不在焉,应该是三天以来状态最差的一次,所以这个分数也还算满意了.状态真的太重要了. 第一题:均分纸牌 贪心.(昨天看BYVoid的noip2001 ...

  3. [NOIP2015 提高组] 运输计划题解

    题目链接:P2680 [NOIP2015 提高组] 运输计划 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 看了好长时间题解才终于懂的,有关lca和二分答案的题解解释的不详细,一时 ...

  4. 水一道NOIP2002提高组的题【A003】

    [A003]均分纸牌[难度A]———————————————————————————————————————————————————— [题目要求] 有 N 堆纸牌,编号分别为 1,2,…, N.每堆 ...

  5. 洛谷-均分纸牌-NOIP2002提高组复赛

    题目描述 Description 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸 ...

  6. [NOIP2002] 提高组 洛谷P1031 均分纸牌

    题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...

  7. NOIP提高组题目归类+题解摘要(2008-2017)

    因为前几天作死立了一个flag说要把NOIP近十年的题目做一做,并写一个题目归类+题解摘要出来,所以这几天就好好的(然而还是颓废了好久)写了一些这些往年的NOIP题目. 这篇博客有什么: 近十年NOI ...

  8. noip 2013 提高组 Day2 部分题解

    积木大赛: 之前没有仔细地想,然后就直接暴力一点(骗点分),去扫每一高度,连到一起的个数,于是2组超时 先把暴力程序贴上来(可以当对拍机) #include<iostream> #incl ...

  9. noip2010提高组3题题解 by rLq

    本题地址http://www.luogu.org/problem/show?pid=1525 关押罪犯 题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和 ...

随机推荐

  1. 【有容云干货-容器系列】Kubernetes调度核心解密:从Google Borg说起

    在之前“容器生态圈脑图大放送”文章中我们根据容器生态圈脑图,从下至上从左至右,依次介绍了容器生态圈中8个组件,其中也提到Kubernetes ,是一个以 Google Borg 为原型的开源项目.可实 ...

  2. 100天搞定机器学习|Day15 朴素贝叶斯

    Day15,开始学习朴素贝叶斯,先了解一下贝爷,以示敬意. 托马斯·贝叶斯 (Thomas Bayes),英国神学家.数学家.数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫:1742年成为英 ...

  3. 消息中间件-activemq实战之整合Spring(四)

    前面的理论准备已经很充分,这一节我们来实战:将activemq整合到Spring框架才行中,因为Spring已经集成了JMS,这也为我们配置activermq带来了方便. 1. Spring对jms的 ...

  4. 简洁实用Socket框架DotNettySocket

    目录 简介 产生背景 使用方式 TcpSocket WebSocket UdpSocket 结尾 简介 DotNettySocket是一个.NET跨平台Socket框架(支持.NET4.5+及.NET ...

  5. mysql优化---订单查询优化(1):视图优化+索引创建

    订单的表结构采用了垂直分表的策略,将订单相关的不同模块的字段维护在不同表中 在订单处理这个页面,需要查询各种维度, 因此为了方便查询创建了v_sale_order视图(老版本) drop view v ...

  6. SpringBoot操作ES进行各种高级查询

    SpringBoot整合ES 创建SpringBoot项目,导入 ES 6.2.1 的 RestClient 依赖和 ES 依赖.在项目中直接引用 es-starter 的话会报容器初始化异常错误,导 ...

  7. ES 26 - 通过partial update局部更新索引文档 (partial update增量修改原理)

    目录 1 什么是partial update 1.1 全量修改文档的原理 1.2 修改指定field的思路 1.3 partial update的优势 1.4 partial update的使用 2 ...

  8. 如何让textarea placeholder 文字垂直居中

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  9. java秒杀系列(2)- 页面静态化技术

    前言 通过代码片段分别介绍服务端渲染.客户端渲染.对象缓存三种方式的写法. 代码片段仅供参考,具体实现需要根据业务场景自行适配,但思想都是一样. 一.服务端渲染方式 1.接口返回html页面的设置 @ ...

  10. javascript——原型与继承

    一.什么是继承? 继承是面向对象语言的一个重要概念.许多面向对象语言都支持两种继承方式:接口继承和实现继承:接口继承只继承方法签名,而实现继承则继承实际的方法.由于函数没有签名,所以ECMAScrip ...