2019dx#7
Solved | Pro.ID | Title | Ratio(Accepted / Submitted) |
![]() |
1001 | A + B = C | 10.48%(301/2872) |
1002 | Bracket Sequences on Tree | 11.27%(16/142) | |
1003 | Cuber Occurrence | 6.67%(1/15) | |
1004 | Data Structure Problem | 23.08%(3/13) | |
1005 | Equation | 0.00%(0/63) | |
![]() |
1006 | Final Exam 推公式,田忌赛马 | 5.06%(297/5872) |
1007 | Getting Your Money Back | 12.42%(20/161) | |
![]() ![]() |
1008 | Halt Hater | 14.77%(61/413) |
1009 | Intersection of Prisms | 0.00%(0/2) | |
![]() |
1010 | Just Repeat 博弈,贪心 | 15.04%(128/851) |
![]() |
1011 | Kejin Player 期望DP | 21.20%(544/2566) |
1001 A + B = C
题意:
给定a,b,c($a, b, c \le 10 ^{100000}$),求一组x, y, z满足$a \times 10^x + b \times 10^y = c \times 10^z$ 。
思路:
先把每个数末尾的0去掉,然后可以发现满足如下等式之一$$ a + b = c \times 10 ^k $$ $$ a \times 10 ^k + b = c $$ $$ a + b \times 10 ^ k = c$$就行了。
由于是大数,可以利用哈希,计算等式中的k,可以移项,乘逆元,预处理mod意义下指数。
然后我用到双哈希保险
// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert>
#include <unordered_map>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a) typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll; const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = ; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/**********showtime************/
const int maxn = 1e5+;
const int N = 1e5+;
char a[maxn],b[maxn],c[maxn];
char d[maxn];
int mod1 = , mod2 = 1e9+;
int ten1[N], ten2[N];
unordered_map<int,int>mp1,mp2;
void init(){
ten1[] = ten2[] = ;
mp1[] = mp2[] = ;
for(int i=; i<N; i++)
{
ten1[i] = 1ll*ten1[i-] * % mod1;
ten2[i] = 1ll*ten2[i-] * % mod2; mp1[ten1[i]] = i;
mp2[ten2[i]] = i;
}
}
ll ksm(ll a, ll b, ll mod){
ll res = ;
while(b > ) {
if(b & ) res = res * a % mod;
a = a * a % mod;
b = b >> ;
}
return res;
}
int main(){
init();
// debug("ok");
int T; scanf("%d", &T); while(T--) {
scanf("%s%s%s", a, b, c);
int alen = strlen(a), blen = strlen(b), clen = strlen(c);
int cnta = , cntb = , cntc = ;
while(a[alen-] == '') alen--, cnta ++;
while(b[blen-] == '') blen--, cntb ++;
while(c[clen-] == '') clen--, cntc ++;
int kk = max(cnta, max(cntb, cntc));
a[alen] = '\0';
b[blen] = '\0';
c[clen] = '\0';
ll A1 = , B1 = , C1 = ;
ll A2 = , B2 = , C2 = ; for(int i=; i<alen; i++){
A1 = (A1 * + (a[i] - '') ) % mod1;
A2 = (A2 * + (a[i] - '') ) % mod2;
} for(int i=; i<blen; i++){
B1 = (B1 * + (b[i] - '') ) % mod1;
B2 = (B2 * + (b[i] - '') ) % mod2;
} for(int i=; i<clen; i++){
C1 = (C1 * + (c[i] - '') ) % mod1;
C2 = (C2 * + (c[i] - '') ) % mod2;
} int k1 = (A1 + B1) % mod1 * ksm(C1, mod1-, mod1) % mod1;
if(mp1.count(k1))k1 = mp1[k1];
else k1 = -;
int k2 = (A2 + B2) % mod2 * ksm(C2, mod2-, mod2) % mod2;
if(mp2.count(k2))k2 = mp2[k2];
else k2 = -;
if(k1 == k2 && k1 >= ) {
printf("%d %d %d\n", kk - cnta, kk - cntb, kk + k1 - cntc);
continue;
} k1 = (C1 - B1) % mod1;
if(k1 < ) k1 += mod1;
k1 = k1 * ksm(A1, mod1-, mod1) % mod1;
if(mp1.count(k1))k1 = mp1[k1];
else k1 = -; k2 = (C2 - B2) % mod2;
if(k2 < ) k2 += mod2;
k2 = k2 * ksm(A2, mod2-, mod2) % mod2;
if(mp2.count(k2))k2 = mp2[k2];
else k2 = -;
if(k1 == k2 && k1 >= ) {
printf("%d %d %d\n", kk + k1 - cnta, kk - cntb, kk - cntc);
continue;
} k1 = (C1 - A1) % mod1;
if(k1 < ) k1 += mod1;
k1 = k1 * ksm(B1, mod1-, mod1) % mod1;
if(mp1.count(k1))k1 = mp1[k1];
else k1 = -; k2 = (C2 - A2) % mod2;
if(k2 < ) k2 += mod2;
k2 = k2 * ksm(B2, mod2-, mod2) % mod2;
if(mp2.count(k2))k2 = mp2[k2];
else k2 = -;
if(k1 == k2 && k1 >= ) {
printf("%d %d %d\n", kk - cnta, kk + k1 - cntb, kk - cntc);
continue;
}
puts("-1");
}
return ;
}
1006 Final Exam
思路:
假设每个题目所用的时间为$a_1, a_2, ... , a_n(a_i <= a_{i+1})$
按老师的想法,为了不让学生过掉n - k 个题目,肯定是把$a_1, a_2,...a_{n-k}$ 对应题目的分值设为$a_1, a_2,...a_{n-k}$.
然后$$m - a_1 - a_2 - ... - a_{n-k} < a_{n-k+1}$$
我们给左边+1,再移项,变成
$$m + 1 \le + a_1 + a_2 + ... + a_{n-k} + a_{n-k+1}$$
可以发现$a_{n-k+1}$最大会被老师卡成$\left\lceil \frac{m + 1}{n - k + 1} \right\rceil$
之后的$a_{n-k+2},,,a_{n}$可以等于$a_{n-k+1}$就行了。
// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a) typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll; const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = ; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/**********showtime************/ int main(){
int T; scanf("%d", &T);
while(T--) {
ll n, m , k;
scanf("%lld%lld%lld", &n, &m, &k);
ll tmp = (m + ) / (n - k + );
if((m+) % (n - k + )) tmp++;
ll ans = (k - ) * tmp + m+ ;
printf("%lld\n", ans);
} return ;
}
1008 Halt Hater
题意:
一开始你在(0, 0)点,面向Y轴正方向。向左走费用为a,向前走费用为b,向右走费用为0。有T($\le 100000$) 组数据,每组给定x,y,a,b,问你到(x,y)的最小费用。
思路:
规律题,首先发现,你到(x-1, y+1)(x, y+1), (x-1, y), (x, y) 其中之一就行了。
然后发现,如果把每个格子看成一个点,那么,相邻格子的费用为a。斜对着的两个格子的费用为min(a, 2 * b)。
一下跨两步的费用为min(2*a, 2*b)。
所以我们首先斜着走,然后两步两步走,然后再走一步。
// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert>
#include <unordered_map>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a) typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll; const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = ; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/**********showtime************/ ll a, b, x, y;
ll check(ll x, ll y) { x = abs(x), y = abs(y); ll ans = ;
ll m = min(x, y); ans += m * min(a, 2ll * b);
ll yu = x + y - m - m;
ans += (yu / ) * min(2ll * a , 2ll * b); if(yu % == ) ans += b;
return ans;
}
int main(){
int T; scanf("%d", &T);
while(T--) {
scanf("%lld%lld%lld%lld", &a, &b, &x, &y);
ll ans = check(x, y);
ans = min(ans, check(x-, y));
ans = min(ans, check(x, y+));
ans = min(ans, check(x-, y+));
printf("%lld\n", ans);
}
return ;
}
2019dx#7的更多相关文章
- 2019DX#10
Solved Pro.ID Title Ratio(Accepted / Submitted) 1001 Minimum Spanning Trees 22.22%(2/9) 1002 Lin ...
- 2019dx#9
Solved Pro.ID Title Ratio(Accepted / Submitted) 1001 Rikka with Quicksort 25.85%(38/147) 1002 Ri ...
- 2019DX#8
Solved Pro.ID Title Ratio(Accepted / Submitted) 1001 Acesrc and Cube Hypernet 7.32%(3/41) 1002 A ...
- 2019DX#6
Solved Pro.ID Title Ratio(Accepted / Submitted) 1001 Salty Fish 16.28%(7/43) OK 1002 Nonsense Tim ...
- 2019DX#5
Solved Pro.ID Title Ratio(Accepted / Submitted) 1001 fraction 辗转相除 4.17%(7/168) ok 1002 three arr ...
- 2019dx#4
Solved Pro.ID Title Ratio(Accepted / Submitted) 1001 AND Minimum Spanning Tree 31.75%(1018/3206) ...
- 2019DX#3
Solved Pro.ID Title Ratio(Accepted / Submitted) 1001 Azshara's deep sea 凸包 6.67%(6/90)
- 2019DX#2
Solved Pro.ID Title Ratio(Accepted / Submitted) 1001 Another Chess Problem 8.33%(1/12) 1002 Beau ...
- 2019DX#1
1001 Blank 题意 有一个长度为n(n<=100)的位子,填入四种颜色,有m个限制,某个区间的颜色个数要恰好等于x个.问颜色个数的方案数. 思路 DP 四维的DP,利用滚动数组优化一维空 ...
随机推荐
- Android Studio 设置/更改 SDK 路径
网上看到有人说需要重启 Android Studio,感觉麻烦,就自己试了试其他方法,果然还是有的! 很简单,只需打开 File 菜单下的 Project Structure 就可以设置了,如图所示:
- 为什么你要用 Spring?
前言 现在Spring几乎成为了Java在企业级复杂应用开发的代名词,得益于Spring简单的设计哲学和其完善的生态圈,确实为廉颇老矣,尚能饭否的 Java 带来了“春天”,有很多同学刚接触Jav ...
- LASSO原作者的论文,来读读看
Regression Shrinkage and Selection via the lasso 众所周知,Robert Tibshirani是统计领域的大佬,这篇文章在1996年提出了LASSO,之 ...
- C#打开并选择特定类型文件并返回文件名
public string[] GetOpenFileDialogReturnFileFullName(bool multiSelect = false) { ...
- Docker:跨主机通信
修改主机docker默认的虚拟网段,然后在各自主机上分别把对方的docker网段加入到路由表中,配合iptables即可实现docker容器夸主机通信.配置方法如下: 设有三台虚拟机 v1: 10.1 ...
- 【Java例题】2.4求函数
4.输入x,编程试求函数 y=sin(x^2)/(1-cosx)的值. 这里的"^"表示乘方. package study; import java.util.Scanner; p ...
- Android实现多语言so easy
微信公众号:CodingAndroid CSDN:http://blog.csdn.net/xinpengfei521声明:本文由CodingAndroid原创,未经授权,不可随意转载! 最近,我们公 ...
- ArrayList用法整理
System.Collections.ArrayList类是一个特殊的数组.通过添加和删除元素,就可以动态改变数组的长度. 一.优点 1.支持自动改变大小的功能 2.可以灵活的插入元素 3.可以灵活的 ...
- .NET World——gPRC概览
什么是gRPC 官方的定义: gRPC is a modern open source high performance RPC framework that can run in any envir ...
- 建立apk定时自动打包系统第二篇——自动上传文件
在<建立apk定时自动打包系统第一篇——Ant多渠道打包并指定打包目录和打包日期>这篇文章中介绍多渠道打包的流程.很多时候我们需要将打包好的apk上传到ftp中,这时候我可以修改custo ...