Solved Pro.ID Title Ratio(Accepted / Submitted)
  1001 A + B = C                   10.48%(301/2872)
  1002 Bracket Sequences on Tree 11.27%(16/142)
  1003 Cuber Occurrence 6.67%(1/15)
  1004 Data Structure Problem 23.08%(3/13)
  1005 Equation 0.00%(0/63)
  1006 Final Exam          推公式,田忌赛马 5.06%(297/5872)
  1007 Getting Your Money Back 12.42%(20/161)
  1008 Halt Hater 14.77%(61/413)
  1009 Intersection of Prisms 0.00%(0/2)
  1010 Just Repeat          博弈,贪心 15.04%(128/851)
  1011 Kejin Player          期望DP 21.20%(544/2566)

1001 A + B = C

题意:

给定a,b,c($a, b, c \le 10 ^{100000}$),求一组x, y, z满足$a \times 10^x + b \times 10^y = c \times 10^z$ 。

思路:

先把每个数末尾的0去掉,然后可以发现满足如下等式之一$$ a + b = c \times 10 ^k $$ $$ a \times 10 ^k + b = c $$ $$ a + b \times 10 ^ k = c$$就行了。

由于是大数,可以利用哈希,计算等式中的k,可以移项,乘逆元,预处理mod意义下指数。

然后我用到双哈希保险

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert>
#include <unordered_map>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a) typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll; const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = ; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/**********showtime************/
const int maxn = 1e5+;
const int N = 1e5+;
char a[maxn],b[maxn],c[maxn];
char d[maxn];
int mod1 = , mod2 = 1e9+;
int ten1[N], ten2[N];
unordered_map<int,int>mp1,mp2;
void init(){
ten1[] = ten2[] = ;
mp1[] = mp2[] = ;
for(int i=; i<N; i++)
{
ten1[i] = 1ll*ten1[i-] * % mod1;
ten2[i] = 1ll*ten2[i-] * % mod2; mp1[ten1[i]] = i;
mp2[ten2[i]] = i;
}
}
ll ksm(ll a, ll b, ll mod){
ll res = ;
while(b > ) {
if(b & ) res = res * a % mod;
a = a * a % mod;
b = b >> ;
}
return res;
}
int main(){
init();
// debug("ok");
int T; scanf("%d", &T); while(T--) {
scanf("%s%s%s", a, b, c);
int alen = strlen(a), blen = strlen(b), clen = strlen(c);
int cnta = , cntb = , cntc = ;
while(a[alen-] == '') alen--, cnta ++;
while(b[blen-] == '') blen--, cntb ++;
while(c[clen-] == '') clen--, cntc ++;
int kk = max(cnta, max(cntb, cntc));
a[alen] = '\0';
b[blen] = '\0';
c[clen] = '\0';
ll A1 = , B1 = , C1 = ;
ll A2 = , B2 = , C2 = ; for(int i=; i<alen; i++){
A1 = (A1 * + (a[i] - '') ) % mod1;
A2 = (A2 * + (a[i] - '') ) % mod2;
} for(int i=; i<blen; i++){
B1 = (B1 * + (b[i] - '') ) % mod1;
B2 = (B2 * + (b[i] - '') ) % mod2;
} for(int i=; i<clen; i++){
C1 = (C1 * + (c[i] - '') ) % mod1;
C2 = (C2 * + (c[i] - '') ) % mod2;
} int k1 = (A1 + B1) % mod1 * ksm(C1, mod1-, mod1) % mod1;
if(mp1.count(k1))k1 = mp1[k1];
else k1 = -;
int k2 = (A2 + B2) % mod2 * ksm(C2, mod2-, mod2) % mod2;
if(mp2.count(k2))k2 = mp2[k2];
else k2 = -;
if(k1 == k2 && k1 >= ) {
printf("%d %d %d\n", kk - cnta, kk - cntb, kk + k1 - cntc);
continue;
} k1 = (C1 - B1) % mod1;
if(k1 < ) k1 += mod1;
k1 = k1 * ksm(A1, mod1-, mod1) % mod1;
if(mp1.count(k1))k1 = mp1[k1];
else k1 = -; k2 = (C2 - B2) % mod2;
if(k2 < ) k2 += mod2;
k2 = k2 * ksm(A2, mod2-, mod2) % mod2;
if(mp2.count(k2))k2 = mp2[k2];
else k2 = -;
if(k1 == k2 && k1 >= ) {
printf("%d %d %d\n", kk + k1 - cnta, kk - cntb, kk - cntc);
continue;
} k1 = (C1 - A1) % mod1;
if(k1 < ) k1 += mod1;
k1 = k1 * ksm(B1, mod1-, mod1) % mod1;
if(mp1.count(k1))k1 = mp1[k1];
else k1 = -; k2 = (C2 - A2) % mod2;
if(k2 < ) k2 += mod2;
k2 = k2 * ksm(B2, mod2-, mod2) % mod2;
if(mp2.count(k2))k2 = mp2[k2];
else k2 = -;
if(k1 == k2 && k1 >= ) {
printf("%d %d %d\n", kk - cnta, kk + k1 - cntb, kk - cntc);
continue;
}
puts("-1");
}
return ;
}

1006 Final Exam

思路:

假设每个题目所用的时间为$a_1, a_2, ... , a_n(a_i <= a_{i+1})$

按老师的想法,为了不让学生过掉n - k 个题目,肯定是把$a_1, a_2,...a_{n-k}$ 对应题目的分值设为$a_1, a_2,...a_{n-k}$.

然后$$m - a_1 - a_2 - ... - a_{n-k} < a_{n-k+1}$$

我们给左边+1,再移项,变成

$$m + 1 \le + a_1 + a_2 + ... + a_{n-k} + a_{n-k+1}$$

可以发现$a_{n-k+1}$最大会被老师卡成$\left\lceil  \frac{m + 1}{n - k + 1} \right\rceil$

之后的$a_{n-k+2},,,a_{n}$可以等于$a_{n-k+1}$就行了。

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a) typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll; const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = ; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/**********showtime************/ int main(){
int T; scanf("%d", &T);
while(T--) {
ll n, m , k;
scanf("%lld%lld%lld", &n, &m, &k);
ll tmp = (m + ) / (n - k + );
if((m+) % (n - k + )) tmp++;
ll ans = (k - ) * tmp + m+ ;
printf("%lld\n", ans);
} return ;
}

1008 Halt Hater

题意:

一开始你在(0, 0)点,面向Y轴正方向。向左走费用为a,向前走费用为b,向右走费用为0。有T($\le 100000$) 组数据,每组给定x,y,a,b,问你到(x,y)的最小费用。

思路:

规律题,首先发现,你到(x-1, y+1)(x, y+1), (x-1, y), (x, y) 其中之一就行了。

然后发现,如果把每个格子看成一个点,那么,相邻格子的费用为a。斜对着的两个格子的费用为min(a, 2 * b)。

一下跨两步的费用为min(2*a, 2*b)。

所以我们首先斜着走,然后两步两步走,然后再走一步。

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert>
#include <unordered_map>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a) typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll; const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = ; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/**********showtime************/ ll a, b, x, y;
ll check(ll x, ll y) { x = abs(x), y = abs(y); ll ans = ;
ll m = min(x, y); ans += m * min(a, 2ll * b);
ll yu = x + y - m - m;
ans += (yu / ) * min(2ll * a , 2ll * b); if(yu % == ) ans += b;
return ans;
}
int main(){
int T; scanf("%d", &T);
while(T--) {
scanf("%lld%lld%lld%lld", &a, &b, &x, &y);
ll ans = check(x, y);
ans = min(ans, check(x-, y));
ans = min(ans, check(x, y+));
ans = min(ans, check(x-, y+));
printf("%lld\n", ans);
}
return ;
}

2019dx#7的更多相关文章

  1. 2019DX#10

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Minimum Spanning Trees 22.22%(2/9)   1002 Lin ...

  2. 2019dx#9

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Rikka with Quicksort 25.85%(38/147)   1002 Ri ...

  3. 2019DX#8

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Acesrc and Cube Hypernet 7.32%(3/41)   1002 A ...

  4. 2019DX#6

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Salty Fish 16.28%(7/43)  OK 1002 Nonsense Tim ...

  5. 2019DX#5

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 fraction 辗转相除 4.17%(7/168) ok  1002 three arr ...

  6. 2019dx#4

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 AND Minimum Spanning Tree 31.75%(1018/3206)   ...

  7. 2019DX#3

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Azshara's deep sea 凸包 6.67%(6/90)  

  8. 2019DX#2

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Another Chess Problem 8.33%(1/12)   1002 Beau ...

  9. 2019DX#1

    1001 Blank 题意 有一个长度为n(n<=100)的位子,填入四种颜色,有m个限制,某个区间的颜色个数要恰好等于x个.问颜色个数的方案数. 思路 DP 四维的DP,利用滚动数组优化一维空 ...

随机推荐

  1. Android Studio 设置/更改 SDK 路径

    网上看到有人说需要重启 Android Studio,感觉麻烦,就自己试了试其他方法,果然还是有的! 很简单,只需打开 File 菜单下的 Project Structure 就可以设置了,如图所示:

  2. 为什么你要用 Spring?

    ​ 前言 现在Spring几乎成为了Java在企业级复杂应用开发的代名词,得益于Spring简单的设计哲学和其完善的生态圈,确实为廉颇老矣,尚能饭否的 Java 带来了“春天”,有很多同学刚接触Jav ...

  3. LASSO原作者的论文,来读读看

    Regression Shrinkage and Selection via the lasso 众所周知,Robert Tibshirani是统计领域的大佬,这篇文章在1996年提出了LASSO,之 ...

  4. C#打开并选择特定类型文件并返回文件名

    public string[] GetOpenFileDialogReturnFileFullName(bool multiSelect = false)         {             ...

  5. Docker:跨主机通信

    修改主机docker默认的虚拟网段,然后在各自主机上分别把对方的docker网段加入到路由表中,配合iptables即可实现docker容器夸主机通信.配置方法如下: 设有三台虚拟机 v1: 10.1 ...

  6. 【Java例题】2.4求函数

    4.输入x,编程试求函数 y=sin(x^2)/(1-cosx)的值. 这里的"^"表示乘方. package study; import java.util.Scanner; p ...

  7. Android实现多语言so easy

    微信公众号:CodingAndroid CSDN:http://blog.csdn.net/xinpengfei521声明:本文由CodingAndroid原创,未经授权,不可随意转载! 最近,我们公 ...

  8. ArrayList用法整理

    System.Collections.ArrayList类是一个特殊的数组.通过添加和删除元素,就可以动态改变数组的长度. 一.优点 1.支持自动改变大小的功能 2.可以灵活的插入元素 3.可以灵活的 ...

  9. .NET World——gPRC概览

    什么是gRPC 官方的定义: gRPC is a modern open source high performance RPC framework that can run in any envir ...

  10. 建立apk定时自动打包系统第二篇——自动上传文件

    在<建立apk定时自动打包系统第一篇——Ant多渠道打包并指定打包目录和打包日期>这篇文章中介绍多渠道打包的流程.很多时候我们需要将打包好的apk上传到ftp中,这时候我可以修改custo ...