根据golang io源码包解读io.go文件。

1. 整体大纲

分别从接口,函数以及结构体去解读golang io 包中io.go文件。


2. 接口

在源代码中,对于 IO 流,定义了四个基本操作原语,分别用 Reader,Writer,Closer,Seeker 接口表达二进制流读、写、关闭、寻址等操作。根据其中的性质来区分,将分为读,写,关闭以及寻址等解读。

详细实现参考: bytes.Buffer

Reader

type Reader interface {
Read(p []byte) (n int, err error)
}

Reader 接口包装了基本的 Read 方法,用于输出自身(实现者)的数据到p。Read 方法用于将对象的数据流读入到 p 中,返回读取的字节数和遇到的错误。实现者不能包含p。

  • 在没有遇到读取错误的情况下:

    • 如果读到了数据(n > 0),则应该返回 n,nil。
    • 如果数据被读空,没有数据可读(n == 0),则应该返回 0,EOF[1];
  • 遇到读取错误,则 err 应该返回相应的错误信息(如果在读取过程中发了错误即n>0,那么要考虑处理这种情况,返回错误为ErrUnexpectedEOF[2]);
  • 返回0,nil,那么代表什么都没有发生。
	buf := bytes.NewBuffer([]byte("Hello World!"))
b := make([]byte, buf.Len()) n, err := buf.Read(b)
fmt.Printf("%s %v\n", b[:n], err) // output: Hello World! <nil>
ReaderFrom
type ReaderFrom interface {
ReadFrom(r Reader) (n int64, err error)
}

ReaderFrom 接口包装了基本的 ReadFrom 方法,用于从 r 中读取数据存入自身(即实现者本身带有p)。 直到遇到 EOF 或读取出错为止,返回读取的字节数和遇到的错误。

	buf := bytes.NewBuffer([]byte("Hello World!"))
dst := bytes.Buffer{} dst.ReadFrom(buf)
dst.WriteTo(os.Stdout) // output: Hello World!

ReaderAt

type ReaderAt interface {
ReadAt(p []byte, off int64) (n int, err error)
}

ReaderAt 接口包装了基本的 ReadAt 方法,用于将自身的数据写入 p 中。ReadAt 忽略之前的读写位置,从起始位置的 off 偏移处开始读取。

返回写入的字节数和遇到的错误:

  • 如果 p 被写满,则 err 会返回 nil;
  • 如果 p 没 有被写满,则会返回一个错误信息用于说明为什么没有写满(比如 io.EOF)。在这方面 ReadAt 比 Read 更严格。
  • 如果 p 被写满的同时,自身的数据也刚好被读完,则 err 即可以返回 nil 也可以返回 io.EOF。

即使不能将 p 填满,ReadAt 在被调用时也可能会使用整个 p 的空间作为缓存空间。如果 ReadAt 自身的数据是从其它地方(比如网络)获取数的,那么在写入 p 的时候,如果没有把 p 写满(比如网络延时),则 ReadAt 会阻塞,直到获取更多的数据把 p 写满,或者所有数据都获取完毕,或者遇到读取错误(比如超时)时才返回。

在这方面,ReadAt 和 Read 是不同的。

如果 ReadAt 读取的对象是某个有偏移量的底层数据流时,则 ReadAt 方法既不能影响底层的偏移量,也不应该被底层的偏移量影响。

ReadAt 的调用者可以对同一数据流并行执行 ReadAt 方法。

ReaderAt 的实现者不应该持有 p。

ByteReader

type ByteReader interface {
ReadByte() (byte, error)
}

ByteReader 接口包装了基本的 ReadByte 方法,用于从自身读出一个字节。

返回读出的字节和遇到的错误。如果返回错误,那么没有任何输入byte被消费,所返回的byte也是无效的。

	buf := bytes.NewBuffer([]byte("Hello World!"))

	c, err := buf.ReadByte()
fmt.Printf("%c %s %v\n", c, buf.String(), err) // output: H ello World! <nil>
ByteScanner
type ByteScanner interface {
ByteReader
UnreadByte() error
}

ByteScanner 在 ByteReader 的基础上增加了一个 UnreadByte 方法,用于撤消最后一次的 ReadByte 操作,以便下次的 ReadByte 操作可以读出与前一次一样的数据。

UnreadByte 之前必须是 ReadByte 才能撤消成功,否则可能会返回一个错误信息(根 据不同的需求,UnreadByte 也可能返回 nil,允许随意调用 UnreadByte,但只有最后一次的 ReadByte 可以被撤销,其它 UnreadByte 不执行任何操作)。

	buf := bytes.NewBuffer([]byte("Hello World!"))

	c, err := buf.ReadByte()
fmt.Printf("%c %s %v\n", c, buf.String(), err)// output: H ello World! <nil> err = buf.UnreadByte()
fmt.Printf("%s %v\n", buf.String(), err)//output: Hello World! <nil>

RuneReader

type RuneReader interface {
ReadRune() (r rune, size int, err error)
}

RuneReader 接口包装了基本的 ReadRune 方法,用于从自身读取一个 UTF-8 编码的字符到 r 中。

返回读取的字符、字符的编码长度和遇到的错误。

	buf := bytes.NewBuffer([]byte("爱Hello World!"))

	c,s, err := buf.ReadRune()
fmt.Printf("%c %d %s %v\n", c,s, buf.String(), err) // output: 爱 3 Hello World! <nil>
RuneScanner
type RuneScanner interface {
RuneReader
UnreadRune() error
}

RuneScanner 在 RuneReader 的基础上增加了一个 UnreadRune 方法,用于撤消最后一次的 ReadRune 操作,以便下次的 ReadRune 操作可以读出与前一次一样的数据。UnreadRune(操作) 之前必须是 ReadRune(操作) 才能撤消成功,否则可能会返回一个错误信息(根据不同的需求,UnreadRune 也可能返回 nil,允许随意调用 UnreadRune,但只有最后一次的 ReadRune 可以被撤销,其它 UnreadRune 不执行任何操作)。

	buf := bytes.NewBuffer([]byte("爱Hello World!"))

	c,s, err := buf.ReadRune()
fmt.Printf("%c %d %s %v\n", c,s, buf.String(), err) // output: 爱 3 Hello World! <nil> err = buf.UnreadRune()
fmt.Printf("%c %d %s %v\n", c,s, buf.String(), err)// output: 爱 3 爱Hello World! <nil>

Writer

type Writer interface {
Write(p []byte) (n int, err error)
}

Writer 接口包装了基本的 Write 方法,用于将数据存入自身。Write 方法用于将 p 中的数据写入到对象的数据流中,返回写入的字节数和遇到的错误。

  • 如果 p 中的数据全部被写入,则 err 应该返回 nil。
  • 如果 p 中的数据无法被全部写入,则 err 应该返回相应的错误信息。
WriterTo
type WriterTo interface {
WriteTo(w Writer) (n int64, err error)
}

WriterTo 接口包装了基本的 WriteTo 方法,用于将自身的数据写入 w 中。

直到数据全部写入完毕或遇到错误为止,返回写入的字节数和遇到的错误。

WriterAt

type WriterAt interface {
WriteAt(p []byte, off int64) (n int, err error)
}

WriterAt 接口包装了基本的 WriteAt 方法,用于将 p 中的数据写入自身。

ReadAt 忽略之前的读写位置,从起始位置的 off 偏移处开始写入。

返回写入的字节数和遇到的错误。如果 p 没有被读完,则必须返回一个 err 值来说明为什么没有读完。

如果 WriterAt 写入的对象是某个有偏移量的底层数据流时,则 ReadAt 方法既不能影响底层的偏移量,也不应该被底层的偏移量影响。

WriterAt 的调用者可以对同一数据流的不同区段并行执行 WriteAt 方法。WriterAt 的实现者不应该持有 p。

ByteWriter

type ByteWriter interface {
WriteByte(c byte) error
}

ByteWriter 接口包装了基本的 WriteByte 方法,用于将一个字节写入自身。

返回遇到的错误

关闭

Closer

type Closer interface {
Close() error
}

Closer 接口包装了基本的 Close 方法,用于关闭数据读写。

Close 一般用于关闭文件,关闭通道,关闭连接,关闭数据库等

寻址

Seeker

type Seeker interface {
Seek(offset int64, whence int) (int64, error)
}

Seeker 接口包装了基本的 Seek 方法,用于移动数据的读写指针。

Seek 设置下一次读写操作的指针位置,每次的读写操作都是从指针位置开始的。

whence 的含义:

  • 如果 whence 为 0:表示从数据的开头开始移动指针。
  • 如果 whence 为 1:表示从数据的当前指针位置开始移动指针。
  • 如果 whence 为 2:表示从数据的尾部开始移动指针。

offset 是指针移动的偏移量。返回新指针位置和遇到的错误。

	r := strings.NewReader("Hello World!")

	n, err := io.CopyN(os.Stdout, r, 5) // output: Hello
fmt.Printf("\n%d %v\n\n", n, err) // output: 5 <nil> r.Seek(0, 0)
n, err = io.Copy(os.Stdout, r) // output: Hello World!
fmt.Printf("\n%d %v\n\n", n, err) // output: 12 <nil>

3. 函数

ReadFull

func ReadFull(r Reader, buf []byte) (n int, err error) {
return ReadAtLeast(r, buf, len(buf))
}

这个函数可以把对象 r 中的数据读出来,然后存入一个缓冲区 buf 中,以便其它代码可以处理 buf 中的数据。

如果没有数据读取,那么久返回拷贝的字节数和一个错误。

  • 返回n,EOF代表没有字节可以读取了
  • 返回ErrUnexpectedEOF,如果在读取数据的过程中发生了err
  • 返回 n == len(buf) 或者 err == nil,代表err不存在
// 定义一个 Ustr 类型
type Ustr struct {
s string // 数据流
i int // 读写位置
} // 根据字符串创建 Ustr 对象
func NewUstr(s string) *Ustr {
return &Ustr{s, 0}
} // 获取未读取部分的数据长度
func (s *Ustr) Len() int {
return len(s.s) - s.i
} // 实现 Ustr 类型的 Read 方法
func (s *Ustr) Read(p []byte) (n int, err error) {
for ; s.i < len(s.s) && n < len(p); s.i++ {
c := s.s[s.i]
// 将小写字母转换为大写字母,然后写入 p 中
if 'a' <= c && c <= 'z' {
p[n] = c + 'A' - 'a'
} else {
p[n] = c
}
n++
}
// 根据读取的字节数设置返回值
if n == 0 {
return n, io.EOF
}
return n, nil
} func main() {
s := NewUstr("Hello World!") // 创建 Ustr 对象 s
buf := make([]byte, s.Len()) // 创建缓冲区 buf n, err := io.ReadFull(s, buf) // 将 s 中的数据读取到 buf 中 fmt.Printf("%s\n", buf) //output: HELLO WORLD!
fmt.Println(n, err) //output: 12 <nil>
}

ReadAtLeast

func ReadFull(r Reader, buf []byte) (n int, err error) {
return ReadAtLeast(r, buf, len(buf))
}

ReadAtLeast 从 r 中读取数据到 buf 中,要求至少读取 min 个字节。

返回读取的字节数和遇到的错误。

如果 min 超出了 buf 的容量,则 err 返回 io.ErrShortBuffer,否则:

  • 读出的数据长度 == 0 ,则 err 返回 EOF[1:1]
  • 读出的数据长度 < min,则 err 返回 io.ErrUnexpectedEOF[2:1]
  • 读出的数据长度 >= min,则 err 返回 nil。
	r := strings.NewReader("Hello World!") // 数据长度为12
b := make([]byte, 15) n, err := io.ReadAtLeast(r, b, 12) // 要求读取至少12个字节
fmt.Printf("%q %d %v\n", b[:n], n, err) // output: "Hello World!" 12 <nil>

LimitReader

func LimitReader(r Reader, n int64) Reader { return &LimitedReader{r, n} }

LimitReader 对 r 进行封装,使其最多只能读取 n 个字节的数据。相当于对 r 做了一个切片 r[:n] 返回。底层实现是一个 *LimitedReader(只有一个 Read 方法)。

	r := strings.NewReader("Hello World!")
lr := io.LimitReader(r, 5) n, err := io.Copy(os.Stdout, lr) // Hello
fmt.Printf("\n%d %v\n", n, err) //// output: 5 <nil>

MultiReader

func MultiReader(readers ...Reader) Reader {
r := make([]Reader, len(readers))
copy(r, readers)
return &multiReader{r}
}

MultiReader 将多个 Reader 封装成一个单独的 Reader,多个 Reader 会按顺序读取,当多个 Reader 都返回 EOF 之后,单独的 Reader 才返回 EOF,否则返回读取过程中遇到的任何错误。

	r1 := strings.NewReader("Hello World!")
r2 := strings.NewReader("ABCDEFG")
r3 := strings.NewReader("abcdefg")
b := make([]byte, 15)
mr := io.MultiReader(r1, r2, r3) for n, err := 0, error(nil); err == nil; {
n, err = mr.Read(b)
fmt.Printf("%q\n", b[:n])
}
// "Hello World!"
// "ABCDEFG"
// "abcdefg"
// "" r1.Seek(0, 0)
r2.Seek(0, 0)
r3.Seek(0, 0)
mr = io.MultiReader(r1, r2, r3)
io.Copy(os.Stdout, mr) // output: Hello World!ABCDEFGabcdefg

TeeReader

func TeeReader(r Reader, w Writer) Reader {
return &teeReader{r, w}
}

TeeReader 对 r 进行封装,使 r 在读取数据的同时,自动向 w 中写入数据。它是一个无缓冲的 Reader,所以对 w 的写入操作必须在 r 的 Read 操作结束之前完成。所有写入时遇到的错误都会被作为 Read 方法的 err 返回。

	r := strings.NewReader("Hello World!")
b := make([]byte, 15)
tr := io.TeeReader(r, os.Stdout) // 会在屏幕输出 n, err := tr.Read(b) // output: Hello World!
fmt.Printf("\n%s %v\n", b[:n], err) //output: Hello World! <nil>

WriteString

func WriteString(w Writer, s string) (n int, err error) {
if sw, ok := w.(StringWriter); ok {
return sw.WriteString(s)
}
return w.Write([]byte(s))
}

WriteString 将字符串 s 写入到 w 中,返回写入的字节数和遇到的错误。

如果 w 实现了 WriteString 方法,则优先使用该方法将 s 写入 w 中。否则,将 s 转换为 []byte,然后调用 w.Write 方法将数据写入 w 中。

	io.WriteString(os.Stdout, "Hello World!\n") // output:  Hello World!

MultiWriter

func MultiWriter(writers ...Writer) Writer {
allWriters := make([]Writer, 0, len(writers))
for _, w := range writers {
if mw, ok := w.(*multiWriter); ok {
allWriters = append(allWriters, mw.writers...)
} else {
allWriters = append(allWriters, w)
}
}
return &multiWriter{allWriters}
}

MultiReader 将向自身写入的数据同步写入到所有 writers 中。

	r := strings.NewReader("Hello World!\n")
mw := io.MultiWriter(os.Stdout, os.Stdout, os.Stdout) r.WriteTo(mw)
// output: Hello World!
// output: Hello World!
// output: Hello World!

复制

CopyN

func CopyN(dst Writer, src Reader, n int64) (written int64, err error) {
written, err = Copy(dst, LimitReader(src, n))
if written == n {
return n, nil
}
if written < n && err == nil {
// src stopped early; must have been EOF.
err = EOF
}
return
}

CopyN 从 src 中复制 n 个字节的数据到 dst 中,返回复制的字节数和遇到的错误。

  • 只有当 written = n 时,err 才返回 nil。

如果 dst 实现了 ReadFrom 方法,则优先调用该方法执行复制操作。

	r := strings.NewReader("Hello World!")

	n, err := io.CopyN(os.Stdout, r, 5) // output:Hello
fmt.Printf("\n%d %v\n\n", n, err) // output:5 <nil>

CopyBuffer

func CopyBuffer(dst Writer, src Reader, buf []byte) (written int64, err error) {
if buf != nil && len(buf) == 0 {
panic("empty buffer in io.CopyBuffer")
}
return copyBuffer(dst, src, buf)
}

CopyBuffer 相当于 Copy,只不过Copy 在执行的过程中会创建一个临时的缓冲区来中转数据,而 CopyBuffer 则可以单独提供一个缓冲区,让多个复制操作共用同一个缓冲区,避免每次复制操作都创建新的缓冲区。如果 buf == nil,则 CopyBuffer 会自动创建缓冲区。

	r := strings.NewReader("Hello World!")
buf := make([]byte, 32) n, err := io.CopyBuffer(os.Stdout, r, buf) // output: Hello World!
fmt.Printf("\n%d %v\n", n, err) // output: 12 <nil>

Copy


func Copy(dst Writer, src Reader) (written int64, err error) {
return copyBuffer(dst, src, nil)
}

Copy 从 src 中复制数据到 dst 中,直到所有数据都复制完毕,返回复制的字节数和遇到的错误。

如果复制过程成功结束,则 err 返回 nil,而不是 EOF,因为 Copy 的定义为“直到所有数据都复制完毕”,所以不会将 EOF 视为错误返回。

如果 src 实现了 WriteTo 方法,则调用 src.WriteTo(dst) 复制数据,否则如果 dst 实现了 ReadeFrom 方法,则调用 dst.ReadeFrom(src) 复制数据。

	r := strings.NewReader("Hello World!")

	n, err := io.Copy(os.Stdout, r)      // output: Hello World!
fmt.Printf("\n%d %v\n\n", n, err) // output: 12 <nil>

4. 结构体

SectionReader

type SectionReader struct {
r ReaderAt
base int64
off int64
limit int64
}

实现了 Read, Seek, and ReadAt 接口

NewSectionReader

func NewSectionReader(r ReaderAt, off int64, n int64) *SectionReader {
return &SectionReader{r, off, off, off + n}
}

NewSectionReader 对 r 进行封装,使其只能从 off 位置开始读取,最多只能读取 n个字节的的数据。相当于对 r 做了一个切片 r[off:off+n] 返回。底层实现是一个 *SectionReader。

Size

func (s *SectionReader) Size() int64 { return s.limit - s.base }

Size 返回允许读取部分的大小(即切片的长度 n)

使用示例

	r := strings.NewReader("Hello World!")
sr := io.NewSectionReader(r, 6, 5) n, err := io.Copy(os.Stdout, sr) // output: World
fmt.Printf("\n%d %d %v\n", sr.Size(), n, err) // output: 5 5 <nil>

LimitedReader

type LimitedReader struct {
R Reader // underlying reader
N int64 // max bytes remaining
}

实现Read接口

使用示例

	r := strings.NewReader("Hello World!")
sr := io.LimitedReader{r,2} buf := make ([]byte,12) n, err := sr.Read(buf)
fmt.Printf("\n%d %s %v\n", n,buf[:n], err) // output: 2 He <nil>

teeReader

type teeReader struct {
r Reader
w Writer
}

结合TeeReader函数使用


5. 备注


  1. EOF is the error returned by Read when no more input is available.Functions should return EOF only to signal a graceful end of input.If the EOF occurs unexpectedly in a structured data stream,the appropriate error is either ErrUnexpectedEOF or some other error ↩︎ ↩︎

  2. ErrUnexpectedEOF means that EOF was encountered in the middle of reading a fixed-size block or data structure. ↩︎ ↩︎

golang io中io.go解读的更多相关文章

  1. Java基础---IO(三)--IO包中的其他类

    第一讲     对象序列化 一.概述 将堆内存中的对象存入硬盘,保留对象中的数据,称之为对象的持久化(或序列化).使用到的两个类:ObjectInputStream和ObjectOutputStrea ...

  2. JAVA中IO总结

    JAVA中IO流主要分为两大类: 字节流:InputStream+OutputStream 字符流:Reader+Writer 字节流: InputStream是所有字节输入流的父类 OutputSt ...

  3. socket.io 中文手册 socket.io 中文文档

    socket.io 中文手册,socket.io 中文文档转载于:http://www.cnblogs.com/xiezhengcai/p/3956401.html 服务端 io.on('connec ...

  4. java中IO写文件工具类

    以下是一些依据经常使用java类进行组装的对文件进行操作的类,平时,我更喜欢使用Jodd.io中提供的一些对文件的操作类,里面的方法写的简单易懂. 当中jodd中提供的JavaUtil类中提供的方法足 ...

  5. Java中IO流的总结

    有关Java中IO流总结图 流分类 按方向分 输入流 输出流 按单位分 字节流 字符流 按功能分 节点流 处理流(过滤流) 其他 所有的流继承与这四类流:InputSteam.OutputStream ...

  6. Python中IO概述

    Python中的io模块是用来处理各种类型的I/O操作流.主要有三种类型的I/O类型:文本I/O(Text I/O),二进制I/O(Binary I/O)和原始I/O(Raw I/O).它们都是通用类 ...

  7. Java中IO流中的装饰设计模式(BufferReader的原理)

    本文粗略的介绍下JavaIO的整体框架,重在解释BufferReader/BufferWriter的演变过程和原理(对应的设计模式) 一.JavaIO的简介 流按操作数据分为两种:字节流与字符流. 流 ...

  8. 简述C#中IO的应用 RabbitMQ安装笔记 一次线上问题引发的对于C#中相等判断的思考 ef和mysql使用(一) ASP.NET/MVC/Core的HTTP请求流程

    简述C#中IO的应用   在.NET Framework 中. System.IO 命名空间主要包含基于文件(和基于内存)的输入输出(I/O)服务的相关基础类库.和其他命名空间一样. System.I ...

  9. 一头扎进 Java IO中

    Java IO 概述 在这一小节,我会试着给出Java IO(java.io)包下所有类的概述.更具体地说,我会根据类的用途对类进行分组.这个分组将会使你在未来的工作中,进行类的用途判定时,或者是为某 ...

随机推荐

  1. Z从壹开始前后端分离【 .NET Core2.0/3.0 +Vue2.0 】框架之三 || Swagger的使用 3.1

    本文梯子 本文3.0版本文章 常见问题 1.Bug调试 2.经常有小伙伴遇到这个错误 3.路由重载 一.为什么使用Swagger 二.配置Swagger服务 1.引用Nuget包 2.配置服务 3.启 ...

  2. pycharm 新建py文件写时有作者和时间

    ##!/usr/bin/python3 # -*- coding: utf-8 -*- ''' @Time : ${DATE} ${TIME} @Author : YourName @FileName ...

  3. JAVA----HelloWorld

    1.步骤 将java代码编写到扩展名为.java的文件中(扩展名的查看) 新建文本文档,重命名为Test.java. 以记事本方式打开. 写入代码. public class Test{       ...

  4. ZooKeeper安装、配置和使用

    Zookeeper的概述: ZooKeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目. ZooKeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架, ...

  5. Material 风格的搜索框MaterialSearchView的使用

    大多数App中都有搜索的功能,虽然国内实实在在的遵循Google material design设计语言来设计的App实在不多,但个人感觉MD真的是非常值得研究,这次给大家介绍的是 Material ...

  6. Android 工程的创建

    还望支持个人博客站:http://www.enjoytoday.cn 本章节主要介绍如何开始Android工程的创建和android开发过程中需要的一些简单的技巧和知识.首篇文章主要介绍如何开始And ...

  7. momentjs在vue中的用法

    js代码 import moment from 'moment'; const jsCountDown = document.getElementById('js-countdown'); const ...

  8. Pycharm/Webstorm 上传和下拉 GitHub 项目

    操作流程:Pycharm和Webstorm的操作页面类似,本文以Webstorm为例 1.打开Webstorm软件选择 Settings 2.在Version Control 中填写 Git 的可执行 ...

  9. [android]system.img文件的打包和解包

    1:system.img的两种格式 system2_0.img: Linux rev 1.0 ext4 filesystem data, UUID=57f8f4bc-abf4-655f-bf67-94 ...

  10. ARM 寻址方式

    寻址方式有 9种 1.寄存器 2.立即数 3.寄存器位移 4.寄存器间接 5.基址 6.多寄存器 7.堆栈 8.块拷贝 9.相对 1. MOV R1,R2 R1 = R2 2. MOV R0,#0x1 ...