关于python语言优化的一些思考
最近一直在做python工程化相关的工作,颇有心得,遂总结一下。
一是为了整理思绪,二是为了解放自己健忘的大脑。
python是一个C的语法糖盒子
原生的python通常都是由cpython实现,而cpython的运行效率,确实让人不敢恭维,比较好的解决方案有cython、numba、pypy等等
cython
是目前我认为发展最好,最靠谱的一项Python加速解决方案。
使用cython编译过后的代码,通常会对原python代码有2倍以上的速度提升。cython的编译也很简单,只需要构建一个setup.py,然后执行:
python setup.py build_ext
numba

numba也是我比较看好的,它的亮点在于使用装饰器的方式应用jit技术,例如下面的代码:
@jit
def run_xxx():
...
可直接将run_xxx方法进行高效的c编译。
但在大多数应用场景下(尤其是采取了服务拆分或微服务的架构策略),这种功能反而让人有种鸡肋的感觉
只能说numba更适用于模型开发的场景,在模型应用和部署的环节,numba的作用很尴尬
pypy

pypy相对比较小众,这是由于它本身的限制条件较多,尤其是对python第三方包的支持上面更是非常局限。由于我在做python开发的过程中,经常需要限制版本,以及引入较多的第三方包,所以pypy就不在考虑的范围内了
不要轻易相信声称自己很快的模块和方法
曾经在网上看到有人发文,声称numpy是目前python下非常高效的一个模块,而numpy的“娘亲们”,甚至把自己夸上了天,说自己如何如何高效。而国内的一些伪专家们,也是盲目的“助纣为虐”,说什么如果你不太懂,请不要轻易去优化numpy云云,难道你自认为优化的算法能胜过numpy里内置的久经考验的算法?
真的是误人子弟!很多人在这里就被唬住了,代码分析到numpy的环节,就不敢往下走了。
我想说的是,对一切永远保持怀疑的精神才是真正的科学素养,是不是真的高性能,一切要用数据说话。
刚开始,我也被短暂的唬住了,毕竟numpy的底层也没接触过,但profiler分析的结果告诉我,问题就出在numpy里,结果发现在我的项目场景里,使用dict能完全替代numpy的所有操作,性能一下提高了很多,而numpy的高效在于ndarray
所以,采取什么数据结构要看应用场景,没有万能的高效数据结构
不要以为排除法是万能的
优化代码的过程中,因为我的以往成功“经验”,也导致走了不少弯路,最主要的,就是盲目使用排除法。使用排除法只能使用二分查找或快排的策略去组织代码,如果目标代码比较少还可以,事实上,在真实场景中往往有成百上千行目标代码。人工执行和实现O(logN)量级的操作,似乎是一种蛮干。
这里有几个度量工具顺便记录下:
py_spy
https://github.com/benfred/py-spy
方便的生成CPU执行方法的火焰图
line_profiler
https://github.com/rkern/line_profiler
逐行代码分析,不要小看它的能力,它还可以指定要分析的方法和模块
量变真的会引起质变
在很多人的习惯性逻辑思维里,一个程序的性能,随着代码的优化,会是一条平滑的增长曲线。但实践表明,这个逻辑确实有问题。
通过不断对代码的优化,我发现,程序的性能到达一定阶段会发生“突变”,或者“阶跃”。上一次优化的执行时间几百毫秒,下一次优化后的执行时间竟然只有几十毫秒,说发生了“阶跃”一点都不夸张。
为什么会这样?
至少在我的朋友圈里,还没有人能给我令人信服的答案,我自认为比较可靠的理解是,现代操作系统在cpu指令的处理上,对cpu的任务分配还不是那么“流畅”。
哪位朋友有好的见解,欢迎批评指正!
关于python语言优化的一些思考的更多相关文章
- 使用Python语言理解递归
递归 一个函数在执行过程中一次或多次调用其本身便是递归,就像是俄罗斯套娃一样,一个娃娃里包含另一个娃娃. 递归其实是程序设计语言学习过程中很快就会接触到的东西,但有关递归的理解可能还会有一些遗漏,下面 ...
- Python性能优化(转)
分成两部分:代码优化和工具优化 原文:http://my.oschina.net/xianggao/blog/102600 阅读 Zen of Python,在Python解析器中输入 import ...
- 【学习笔记】PYTHON语言程序设计(北理工 嵩天)
1 Python基本语法元素 1.1 程序设计基本方法 计算机发展历史上最重要的预测法则 摩尔定律:单位面积集成电路上可容纳晶体管数量约2年翻倍 cpu/gpu.内存.硬盘.电子产品价格等都遵 ...
- 如何系统地自学一门Python 语言(转)
转自:http://www.phpxs.com/post/4521 零基础情况下,学一门语言充实下自己,Python,简洁.优美.容易使用,是一个很好的选择.那么如何系统地自学Python呢? 有的人 ...
- Python语言在企业级应用上的十大谬误
英文原文:https://www.paypal-engineering.com/2014/12/10/10-myths-of-enterprise-python/ 翻译原文:http://www.os ...
- python性能优化
注意:本文除非特殊指明,”python“都是代表CPython,即C语言实现的标准python,且本文所讨论的是版本为2.7的CPython. python为什么性能差: 当我们提到一门编程语言的 ...
- 动态语言的灵活性是把双刃剑 -- 以Python语言为例
本文有些零碎,总题来说,包括两个问题:(1)可变对象(最常见的是list dict)被意外修改的问题,(2)对参数(parameter)的检查问题.这两个问题,本质都是因为动态语言(动态类型语言)的特 ...
- 机器学习之支持向量机(四):支持向量机的Python语言实现
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...
- Python语言学习之C++调用python
C++调用python 在C/C++中嵌入Python,可以使用Python提供的强大功能,通过嵌入Python可以替代动态链接库形式的接口,这样可以方便地根据需要修改脚本代码,而不用重新编译链接二进 ...
随机推荐
- 项目spring boot 写es hbase 运行内存溢出
本地项目运行正常.服务器上运行内存溢出. 项目内部同时做插入oracle,es,hbase 经过测试发现 同时插入es,hbase是服务器上就会出现内存溢出 如果只插入oracle+es 或oracl ...
- ubuntu & centos RTL88x2BU 无线网卡驱动(v5.1.7_19806) 安装
前提 大部分情况都是因为当前系统的内核不满足驱动文件的编译条件,可以通过驱动文件中的文档来确定是否要升级内核还是降级内核, 对于升级内核只需要下载指定的内核版本安装即可,降级内核(暂时不清楚是否会 ...
- C语言I博客作业07
这个作业属于那个课程 C语言程序设计II 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/SE2019-1/homework/9931 我在这个课程的目标 ...
- Pandas 筛选操作
# 导入相关库 import numpy as np import pandas as pd 在数据处理过程中,经常会遇到要筛选不同要求的数据.通过 Pandas 可以轻松时间,这一篇我们来看下如何使 ...
- [考试反思]0801NOIP模拟测试11
8月开门红. 放假回来果然像是神志不清一样. 但还是要接受这个事实. 嗯,说好听点,并列rank#7. 说难听点,垃圾rank#18. 都不用粘人名就知道我是哪一个吧... 因为图片不能太长,所以就不 ...
- JVM性能调优详解
前面我们学习了整个JVM系列,最终目标的不仅仅是了解JVM的基础知识,也是为了进行JVM性能调优做准备.这篇文章带领大家学习JVM性能调优的知识. 性能调优 性能调优包含多个层次,比如:架构调优.代码 ...
- Java描述设计模式(17):调停者模式
本文源码:GitHub·点这里 || GitEE·点这里 一.生活场景 1.场景描述 在公司的日常安排中,通常划分多个部门,每个部门又会分为不同的小组,部门经理的一项核心工作就是协调部门小组之间的工作 ...
- 【实用工具】这些你不得不知道的chrome插件,让你事半功倍
平时chrome插件用多了,发现在工作中有很多插件特别好用,让你事半功倍.于是我抽时间整理了一些非常好用的chrome插件分享给大家,其中有些插件是我已经离不开,每天都在用的.希望这篇文章能帮助你找到 ...
- python学习之【第七篇】:Python中的集合及其所具有的方法
1.前言 python中的集合set与列表类似,它们最大的区别是集合内不允许出现重复元素,如果在定义时包含重复元素,会自动去重. 集合是无序的,集合中的元素必须是不可变类型.集合可以作为字典的key. ...
- nyoj 366 D的小L (全排列)
D的小L 时间限制:4000 ms | 内存限制:65535 KB 难度:2 描述 一天TC的匡匡找ACM的小L玩三国杀,但是这会小L忙着哩,不想和匡匡玩但又怕匡匡生气,这时小L给 ...