A few things to remember while coding in Python.

- 17 May 2012 -

UPDATE: There has been much discussion in Hacker News about this article. A few corrections from it.

  • Zen of Python

    Learning the culture that surrounds a language brings you one step closer to being a better programmer. If you haven’t read the Zen of Python yet open a Python prompt and type import this. For each of the item on the list you can find examples here http://artifex.org/~hblanks/talks/2011/pep20_by_example.html

    One caught my attention:

    Beautiful is better than ugly

    Give me a function that takes a list of numbers and returns only the even ones, divided by two.

      #-----------------------------------------------------------------------
    
      halve_evens_only = lambda nums: map(lambda i: i/2, filter(lambda i: not i%2, nums))
    
      #-----------------------------------------------------------------------
    
      def halve_evens_only(nums):
    return [i/2 for i in nums if not i % 2]
  • Remember the very simple things in Python

    • Swaping two variables:

        a, b = b, a
    • The step argument in slice operators. For example:

        a = [1,2,3,4,5]
      >>> a[::2] # iterate over the whole list in 2-increments
      [1,3,5]

      The special case x[::-1] is a useful idiom for ‘x reversed’.

        >>> a[::-1]
      [5,4,3,2,1]

    UPDATE: Do keep in mind x.reverse() reverses the list in place and slices gives you the ability to do this:

          >>> x[::-1]
    [5, 4, 3, 2, 1] >>> x[::-2]
    [5, 3, 1]
  • Don’t use mutables as defaults

      def function(x, l=[]):          # Don't do this
    
      def function(x, l=None):        # Way better
    if l is None:
    l = []

    UPDATE: I realise I haven’t explained why. I would recommend reading the article by Fredrik Lundh. In short it is by design that this happens. “Default parameter values are always evaluated when, and only when, the “def” statement they belong to is executed;”

  • Use iteritems rather than items

    iteritems uses generators and thus are better while iterating through very large lists.

      d = {1: "1", 2: "2", 3: "3"}
    
      for key, val in d.items()       # builds complete list when called.
    
      for key, val in d.iteritems()   # calls values only when requested.

    This is similar with range and xrange where xrange only calls values when requested.

    UPDATE: Do note that the iteritems, iterkeys, itervalues are removed from Python 3.x. The dict.keys(), dict.items() and dict.values() return views instead of lists. http://docs.python.org/release/3.1.5/whatsnew/3.0.html#views-and-iterators-instead-of-lists

  • Use isinstance rather than type

    Don’t do

      if type(s) == type(""): ...
    if type(seq) == list or \
    type(seq) == tuple: ...

    rather:

      if isinstance(s, basestring): ...
    if isinstance(seq, (list, tuple)): ...

    For why not to do so: http://stackoverflow.com/a/1549854/504262

    Notice I used basestring and not str as you might be trying to check if a unicode object is a string. For example:

      >>> a=u'aaaa'
    >>> print isinstance(a, basestring)
    True
    >>> print isinstance(a, str)
    False

    This is because in Python versions below 3.0 there are two string types str and unicode:

            object
    |
    |
    basestring
    / \
    / \
    str unicode
  • Learn the various collections

    Python has various container datatypes which are better alternative to the built-in containers like list and dict for specific cases.

    Generally most use this:

    UPDATE: I’m sure most do not use this. Carelessness from my side. A few may consider writing it this way:

      freqs = {}
    for c in "abracadabra":
    try:
    freqs[c] += 1
    except:
    freqs[c] = 1

    Some may say a better solution would be:

      freqs = {}
    for c in "abracadabra":
    freqs[c] = freqs.get(c, 0) + 1

    Rather go for the collection type defaultdict

      from collections import defaultdict
    freqs = defaultdict(int)
    for c in "abracadabra":
    freqs[c] += 1

    Other collections

      namedtuple()	# factory function for creating tuple subclasses with named fields
    deque # list-like container with fast appends and pops on either end
    Counter # dict subclass for counting hashable objects
    OrderedDict # dict subclass that remembers the order entries were added
    defaultdict # dict subclass that calls a factory function to supply missing values

    UPDATE: As noted by a few in Hacker News I could have used Counter instead of defaultdict.

      >>> from collections import Counter
    >>> c = Counter("abracadabra")
    >>> c['a']
    5
  • When creating classes Python’s magic methods

      __eq__(self, other)      # Defines behavior for the equality operator, ==.
    __ne__(self, other) # Defines behavior for the inequality operator, !=.
    __lt__(self, other) # Defines behavior for the less-than operator, <.
    __gt__(self, other) # Defines behavior for the greater-than operator, >.
    __le__(self, other) # Defines behavior for the less-than-or-equal-to operator, <=.
    __ge__(self, other) # Defines behavior for the greater-than-or-equal-to operator, >=.

    There are several others.

  • Conditional Assignments

      x = 3 if (y == 1) else 2   It does exactly what it sounds like: "assign 3 to x if y is 1, otherwise assign 2 to x". You can also chain it if you have something more complicated:
    
      x = 3 if (y == 1) else 2 if (y == -1) else 1

    Though at a certain point, it goes a little too far.

    Note that you can use if … else in any expression. For example:

      (func1 if y == 1 else func2)(arg1, arg2)

    Here func1 will be called if y is 1 and func2, otherwise. In both cases the corresponding function will be called with arguments arg1 and arg2.

    Analogously, the following is also valid:

      x = (class1 if y == 1 else class2)(arg1, arg2)

    where class1 and class2 are two classes.

  • Use the Ellipsis when necessary.

    UPDATE: As one commenter mentioned in Hacker News “Using Ellipsis for getting all items is a violation of the Only One Way To Do It principle. The standard notation is [:].” I do agree with him. A better example is given using numpy in stackoverflow:

    The ellipsis is used to slice higher-dimensional data structures.

    It’s designed to mean at this point, insert as many full slices (:) to extend the multi-dimensional slice to all dimensions.

    Example:

      >>> from numpy import arange
    >>> a = arange(16).reshape(2,2,2,2)

    Now, you have a 4-dimensional matrix of order 2x2x2x2. To select all first elements in the 4th dimension, you can use the ellipsis notation

      >>> a[..., 0].flatten()
    array([ 0, 2, 4, 6, 8, 10, 12, 14])

    which is equivalent to

      >>> a[:,:,:,0].flatten()
    array([ 0, 2, 4, 6, 8, 10, 12, 14])

    Previous suggestion.

    When creating a class you can use __getitem__ to make you class’ object work like a dictionary. Take this class as an example:

      class MyClass(object):
    def __init__(self, a, b, c, d):
    self.a, self.b, self.c, self.d = a, b, c, d def __getitem__(self, item):
    return getattr(self, item) x = MyClass(10, 12, 22, 14)

    Because of __getitem__ you will be able to get the value of a in the object x by x['a']. This is probably a known fact.

    This object is used to extend the Python slicing.(http://docs.python.org/library/stdtypes.html#bltin-ellipsis-object). Thus if we add a clause:

      def __getitem__(self, item):
    if item is Ellipsis:
    return [self.a, self.b, self.c, self.d]
    else:
    return getattr(self, item)

    We can use x[...] to get a list containing all the items.

      >>> x = MyClass(11, 34, 23, 12)
    >>> x[...]
    [11, 34, 23, 12]

A few things to remember while coding in Python.的更多相关文章

  1. machine learning in coding(python):使用贪心搜索【进行特征选择】

    print "Performing greedy feature selection..." score_hist = [] N = 10 good_features = set( ...

  2. Python Coding Interview

    Python Coding Interview Python Advanced Use enumerate() to iterate over both indices and values Debu ...

  3. Python 3.4 send mail

    #coding=utf-8 #Python 3.4 https://docs.python.org/3.4/library/ #IDE:Visual Studio 2015 Window10 impo ...

  4. Artificial intelligence(AI)

    ORM: https://github.com/sunkaixuan/SqlSugar 微软DEMO: https://github.com/Microsoft/BotBuilder 注册KEY:ht ...

  5. Python基础算法综合:加减乘除四则运算方法

    #!usr/bin/env python# -*- coding:utf-8 -*-#python的算法加减乘除用符号:+,-,*,/来表示#以下全是python2.x写法,3.x以上请在python ...

  6. [No000078]Python3 字符串操作

    #!/usr/bin/env python3 # -*- coding: utf-8 -*- '''Python 字符串操作 string替换.删除.截取.复制.连接.比较.查找.包含.大小写转换.分 ...

  7. python for MSSQLserver

    # -*- coding: utf-8 -*- '''python coded by written in 2016/8/31 Used for get win os log for each win ...

  8. python for mysql

    # -*- coding: utf-8 -*- '''python coded by written in 2016/8/31 Used for get win os log for each win ...

  9. python3 实现简单的信用卡还款,取款转账功能V2

    仅实现还款,取款,转账,信息查询功能 程序结构: atm(函数主执行程序): #Author by Andy #_*_ coding:utf-8 _*_ import os,sys Father_pa ...

随机推荐

  1. Oracle数据库中有关记录个数的查询

    一.查询表中全部的记录个数 可用两种方法,一种是在oracle的系统表中统计,另一种需要写存储过程统计,方法分别如下. 1.系统表中统计: SELECT sum(num_rows) FROM user ...

  2. J2EE事务

    一.J2EE 事务处理方式 1. 本地事务:紧密依赖于底层资源管理器(例如数据库连接 ),事务处理局限在当前事务资源内.此种事务处理方式不存在对应用服务器的依赖,因而部署灵活却无法支持多数据源的分布式 ...

  3. android开发软件

    android开发软件: http://developer.android.com/sdk/index.html#download

  4. 【转】从外行的视角尝试讲解为什么这回丰田栽了【全文完】【v1.01】

    转自:http://club.tgfcer.com/thread-6817371-1-1.html  [第一部分]背景简介 前几年闹得沸沸扬扬的丰田刹不住事件最近又有新进展.十月底俄克拉荷马的一次庭审 ...

  5. selenium python (四)键盘事件

    #!/usr/bin/python# -*- coding: utf-8 -*-__author__ = 'zuoanvip' #在实际测试过程中,有时候我们需要使用tab键将焦点转移到下一个需要操作 ...

  6. 初识MFC,WinForm,WPF,Q't

    MFC和QT是C++中常见的GUI框架,而WinForm和WPF是C#中常用的框架,不过我们一般很少叫WinForm框架,可能直接叫图形控件类库更多点.反正只是个称呼罢了,爱咋叫就咋叫.另外WinFo ...

  7. js中ajax如何解决跨域请求

    js中ajax如何解决跨域请求,在讲这个问题之前先解释几个名词 1.跨域请求 所有的浏览器都是同源策略,这个策略能保证页面脚本资源和cookie安全 ,浏览器隔离了来自不同源的请求,防上跨域不安全的操 ...

  8. 云计算分布式大数据Hadoop实战高手之路第七讲Hadoop图文训练课程:通过HDFS的心跳来测试replication具体的工作机制和流程

    这一讲主要深入使用HDFS命令行工具操作Hadoop分布式集群,主要是通过实验的配置hdfs-site.xml文件的心跳来测试replication具体的工作和流程. 通过HDFS的心跳来测试repl ...

  9. Hbase学习记录(1)|伪分布式安装

    概述 Hbase –Haddop Database 是一个高性能,高可靠性.面向列.可伸缩的分布式存储系统. Hbase利用HDFS作为文件存储系统,利用MapReduce来处理Hbase的海量数据, ...

  10. js运动 九宫格展开

    <!doctype html> <html> <head> <meta charset = "utf-8"> <title&g ...