A few things to remember while coding in Python.

- 17 May 2012 -

UPDATE: There has been much discussion in Hacker News about this article. A few corrections from it.

  • Zen of Python

    Learning the culture that surrounds a language brings you one step closer to being a better programmer. If you haven’t read the Zen of Python yet open a Python prompt and type import this. For each of the item on the list you can find examples here http://artifex.org/~hblanks/talks/2011/pep20_by_example.html

    One caught my attention:

    Beautiful is better than ugly

    Give me a function that takes a list of numbers and returns only the even ones, divided by two.

      #-----------------------------------------------------------------------
    
      halve_evens_only = lambda nums: map(lambda i: i/2, filter(lambda i: not i%2, nums))
    
      #-----------------------------------------------------------------------
    
      def halve_evens_only(nums):
    return [i/2 for i in nums if not i % 2]
  • Remember the very simple things in Python

    • Swaping two variables:

        a, b = b, a
    • The step argument in slice operators. For example:

        a = [1,2,3,4,5]
      >>> a[::2] # iterate over the whole list in 2-increments
      [1,3,5]

      The special case x[::-1] is a useful idiom for ‘x reversed’.

        >>> a[::-1]
      [5,4,3,2,1]

    UPDATE: Do keep in mind x.reverse() reverses the list in place and slices gives you the ability to do this:

          >>> x[::-1]
    [5, 4, 3, 2, 1] >>> x[::-2]
    [5, 3, 1]
  • Don’t use mutables as defaults

      def function(x, l=[]):          # Don't do this
    
      def function(x, l=None):        # Way better
    if l is None:
    l = []

    UPDATE: I realise I haven’t explained why. I would recommend reading the article by Fredrik Lundh. In short it is by design that this happens. “Default parameter values are always evaluated when, and only when, the “def” statement they belong to is executed;”

  • Use iteritems rather than items

    iteritems uses generators and thus are better while iterating through very large lists.

      d = {1: "1", 2: "2", 3: "3"}
    
      for key, val in d.items()       # builds complete list when called.
    
      for key, val in d.iteritems()   # calls values only when requested.

    This is similar with range and xrange where xrange only calls values when requested.

    UPDATE: Do note that the iteritems, iterkeys, itervalues are removed from Python 3.x. The dict.keys(), dict.items() and dict.values() return views instead of lists. http://docs.python.org/release/3.1.5/whatsnew/3.0.html#views-and-iterators-instead-of-lists

  • Use isinstance rather than type

    Don’t do

      if type(s) == type(""): ...
    if type(seq) == list or \
    type(seq) == tuple: ...

    rather:

      if isinstance(s, basestring): ...
    if isinstance(seq, (list, tuple)): ...

    For why not to do so: http://stackoverflow.com/a/1549854/504262

    Notice I used basestring and not str as you might be trying to check if a unicode object is a string. For example:

      >>> a=u'aaaa'
    >>> print isinstance(a, basestring)
    True
    >>> print isinstance(a, str)
    False

    This is because in Python versions below 3.0 there are two string types str and unicode:

            object
    |
    |
    basestring
    / \
    / \
    str unicode
  • Learn the various collections

    Python has various container datatypes which are better alternative to the built-in containers like list and dict for specific cases.

    Generally most use this:

    UPDATE: I’m sure most do not use this. Carelessness from my side. A few may consider writing it this way:

      freqs = {}
    for c in "abracadabra":
    try:
    freqs[c] += 1
    except:
    freqs[c] = 1

    Some may say a better solution would be:

      freqs = {}
    for c in "abracadabra":
    freqs[c] = freqs.get(c, 0) + 1

    Rather go for the collection type defaultdict

      from collections import defaultdict
    freqs = defaultdict(int)
    for c in "abracadabra":
    freqs[c] += 1

    Other collections

      namedtuple()	# factory function for creating tuple subclasses with named fields
    deque # list-like container with fast appends and pops on either end
    Counter # dict subclass for counting hashable objects
    OrderedDict # dict subclass that remembers the order entries were added
    defaultdict # dict subclass that calls a factory function to supply missing values

    UPDATE: As noted by a few in Hacker News I could have used Counter instead of defaultdict.

      >>> from collections import Counter
    >>> c = Counter("abracadabra")
    >>> c['a']
    5
  • When creating classes Python’s magic methods

      __eq__(self, other)      # Defines behavior for the equality operator, ==.
    __ne__(self, other) # Defines behavior for the inequality operator, !=.
    __lt__(self, other) # Defines behavior for the less-than operator, <.
    __gt__(self, other) # Defines behavior for the greater-than operator, >.
    __le__(self, other) # Defines behavior for the less-than-or-equal-to operator, <=.
    __ge__(self, other) # Defines behavior for the greater-than-or-equal-to operator, >=.

    There are several others.

  • Conditional Assignments

      x = 3 if (y == 1) else 2   It does exactly what it sounds like: "assign 3 to x if y is 1, otherwise assign 2 to x". You can also chain it if you have something more complicated:
    
      x = 3 if (y == 1) else 2 if (y == -1) else 1

    Though at a certain point, it goes a little too far.

    Note that you can use if … else in any expression. For example:

      (func1 if y == 1 else func2)(arg1, arg2)

    Here func1 will be called if y is 1 and func2, otherwise. In both cases the corresponding function will be called with arguments arg1 and arg2.

    Analogously, the following is also valid:

      x = (class1 if y == 1 else class2)(arg1, arg2)

    where class1 and class2 are two classes.

  • Use the Ellipsis when necessary.

    UPDATE: As one commenter mentioned in Hacker News “Using Ellipsis for getting all items is a violation of the Only One Way To Do It principle. The standard notation is [:].” I do agree with him. A better example is given using numpy in stackoverflow:

    The ellipsis is used to slice higher-dimensional data structures.

    It’s designed to mean at this point, insert as many full slices (:) to extend the multi-dimensional slice to all dimensions.

    Example:

      >>> from numpy import arange
    >>> a = arange(16).reshape(2,2,2,2)

    Now, you have a 4-dimensional matrix of order 2x2x2x2. To select all first elements in the 4th dimension, you can use the ellipsis notation

      >>> a[..., 0].flatten()
    array([ 0, 2, 4, 6, 8, 10, 12, 14])

    which is equivalent to

      >>> a[:,:,:,0].flatten()
    array([ 0, 2, 4, 6, 8, 10, 12, 14])

    Previous suggestion.

    When creating a class you can use __getitem__ to make you class’ object work like a dictionary. Take this class as an example:

      class MyClass(object):
    def __init__(self, a, b, c, d):
    self.a, self.b, self.c, self.d = a, b, c, d def __getitem__(self, item):
    return getattr(self, item) x = MyClass(10, 12, 22, 14)

    Because of __getitem__ you will be able to get the value of a in the object x by x['a']. This is probably a known fact.

    This object is used to extend the Python slicing.(http://docs.python.org/library/stdtypes.html#bltin-ellipsis-object). Thus if we add a clause:

      def __getitem__(self, item):
    if item is Ellipsis:
    return [self.a, self.b, self.c, self.d]
    else:
    return getattr(self, item)

    We can use x[...] to get a list containing all the items.

      >>> x = MyClass(11, 34, 23, 12)
    >>> x[...]
    [11, 34, 23, 12]

A few things to remember while coding in Python.的更多相关文章

  1. machine learning in coding(python):使用贪心搜索【进行特征选择】

    print "Performing greedy feature selection..." score_hist = [] N = 10 good_features = set( ...

  2. Python Coding Interview

    Python Coding Interview Python Advanced Use enumerate() to iterate over both indices and values Debu ...

  3. Python 3.4 send mail

    #coding=utf-8 #Python 3.4 https://docs.python.org/3.4/library/ #IDE:Visual Studio 2015 Window10 impo ...

  4. Artificial intelligence(AI)

    ORM: https://github.com/sunkaixuan/SqlSugar 微软DEMO: https://github.com/Microsoft/BotBuilder 注册KEY:ht ...

  5. Python基础算法综合:加减乘除四则运算方法

    #!usr/bin/env python# -*- coding:utf-8 -*-#python的算法加减乘除用符号:+,-,*,/来表示#以下全是python2.x写法,3.x以上请在python ...

  6. [No000078]Python3 字符串操作

    #!/usr/bin/env python3 # -*- coding: utf-8 -*- '''Python 字符串操作 string替换.删除.截取.复制.连接.比较.查找.包含.大小写转换.分 ...

  7. python for MSSQLserver

    # -*- coding: utf-8 -*- '''python coded by written in 2016/8/31 Used for get win os log for each win ...

  8. python for mysql

    # -*- coding: utf-8 -*- '''python coded by written in 2016/8/31 Used for get win os log for each win ...

  9. python3 实现简单的信用卡还款,取款转账功能V2

    仅实现还款,取款,转账,信息查询功能 程序结构: atm(函数主执行程序): #Author by Andy #_*_ coding:utf-8 _*_ import os,sys Father_pa ...

随机推荐

  1. jquery easyui datagrid字段绑定问题

    表字段为G_XIAN,生成PO对象时为private String GXian; datagrid字段必须写为gXian,否则数据无法正确绑定. 总结:不管VO对象中字段名称首字母是否大写,在data ...

  2. LOAD DATA INFILE – performance case study

    转: http://venublog.com/2007/11/07/load-data-infile-performance/ I often noticed that people complain ...

  3. Spring工厂方式创建Bean实例

    创建Bean实例的方式: 1) 通过构造器(有参或无参) 方式: <bean id="" class=""/> 2) 通过静态工厂方法 方式: &l ...

  4. AspNetPager 自定义html

    如果,上面的分页控件里面,成功和失败都是我自己添加的,使用方法如下 anp.CustomInfoHTML = "总计%RecordCount%条记录,成功" + Success + ...

  5. 关系数据库&&NoSQL数据库

    在过去,我们只需要学习和使用一种数据库技术,就能做几乎所有的数据库应用开发.因为成熟稳定的关系数据库产品并不是很多,而供你选择的免费版本就更加少了,所以互联网领域基本上都选择了免费的MySQL数据库. ...

  6. Eclipse使用技巧总结

    Eclipse设置工作空间的字符编码: 打开eclipse开发界面,依次点击Window->Preferences->General->Workspace 修改Text file e ...

  7. SQL Server数学函数

    数学函数 1.计算绝对值ABS ABS函数对一个数值表达式结果计算绝对值(bit数据类型除外),返回整数. 语法结构: ABS(数值表达式) 返回值:与数值表达式类型一致的数据 示例: ) --输出 ...

  8. delphi 2010 导出sql server 数据到DBF乱码问题

    近日,由于业务需要导出sql server 数据到DBF文件,要查询多表记录,并适当处理后生成导出DBF文件,系统使用delphi2010平台开发. 首先按要求在VFP里创建DBF表,字段数有240个 ...

  9. REST四种请求(get,delete,put,post) 收集整理 之一

    转自:http://blog.csdn.net/cloudcraft/article/details/10087033 资源是REST中最关键的抽象概念,它们是能够被远程访问的应用程序对象.一个资源就 ...

  10. OWA修改密码注意事项

    Exchange搭建参考 http://yuelei.blog.51cto.com/202879/76302 http://543925535.blog.51cto.com/639838/d-37/p ...