A few things to remember while coding in Python.

- 17 May 2012 -

UPDATE: There has been much discussion in Hacker News about this article. A few corrections from it.

  • Zen of Python

    Learning the culture that surrounds a language brings you one step closer to being a better programmer. If you haven’t read the Zen of Python yet open a Python prompt and type import this. For each of the item on the list you can find examples here http://artifex.org/~hblanks/talks/2011/pep20_by_example.html

    One caught my attention:

    Beautiful is better than ugly

    Give me a function that takes a list of numbers and returns only the even ones, divided by two.

      #-----------------------------------------------------------------------
    
      halve_evens_only = lambda nums: map(lambda i: i/2, filter(lambda i: not i%2, nums))
    
      #-----------------------------------------------------------------------
    
      def halve_evens_only(nums):
    return [i/2 for i in nums if not i % 2]
  • Remember the very simple things in Python

    • Swaping two variables:

        a, b = b, a
    • The step argument in slice operators. For example:

        a = [1,2,3,4,5]
      >>> a[::2] # iterate over the whole list in 2-increments
      [1,3,5]

      The special case x[::-1] is a useful idiom for ‘x reversed’.

        >>> a[::-1]
      [5,4,3,2,1]

    UPDATE: Do keep in mind x.reverse() reverses the list in place and slices gives you the ability to do this:

          >>> x[::-1]
    [5, 4, 3, 2, 1] >>> x[::-2]
    [5, 3, 1]
  • Don’t use mutables as defaults

      def function(x, l=[]):          # Don't do this
    
      def function(x, l=None):        # Way better
    if l is None:
    l = []

    UPDATE: I realise I haven’t explained why. I would recommend reading the article by Fredrik Lundh. In short it is by design that this happens. “Default parameter values are always evaluated when, and only when, the “def” statement they belong to is executed;”

  • Use iteritems rather than items

    iteritems uses generators and thus are better while iterating through very large lists.

      d = {1: "1", 2: "2", 3: "3"}
    
      for key, val in d.items()       # builds complete list when called.
    
      for key, val in d.iteritems()   # calls values only when requested.

    This is similar with range and xrange where xrange only calls values when requested.

    UPDATE: Do note that the iteritems, iterkeys, itervalues are removed from Python 3.x. The dict.keys(), dict.items() and dict.values() return views instead of lists. http://docs.python.org/release/3.1.5/whatsnew/3.0.html#views-and-iterators-instead-of-lists

  • Use isinstance rather than type

    Don’t do

      if type(s) == type(""): ...
    if type(seq) == list or \
    type(seq) == tuple: ...

    rather:

      if isinstance(s, basestring): ...
    if isinstance(seq, (list, tuple)): ...

    For why not to do so: http://stackoverflow.com/a/1549854/504262

    Notice I used basestring and not str as you might be trying to check if a unicode object is a string. For example:

      >>> a=u'aaaa'
    >>> print isinstance(a, basestring)
    True
    >>> print isinstance(a, str)
    False

    This is because in Python versions below 3.0 there are two string types str and unicode:

            object
    |
    |
    basestring
    / \
    / \
    str unicode
  • Learn the various collections

    Python has various container datatypes which are better alternative to the built-in containers like list and dict for specific cases.

    Generally most use this:

    UPDATE: I’m sure most do not use this. Carelessness from my side. A few may consider writing it this way:

      freqs = {}
    for c in "abracadabra":
    try:
    freqs[c] += 1
    except:
    freqs[c] = 1

    Some may say a better solution would be:

      freqs = {}
    for c in "abracadabra":
    freqs[c] = freqs.get(c, 0) + 1

    Rather go for the collection type defaultdict

      from collections import defaultdict
    freqs = defaultdict(int)
    for c in "abracadabra":
    freqs[c] += 1

    Other collections

      namedtuple()	# factory function for creating tuple subclasses with named fields
    deque # list-like container with fast appends and pops on either end
    Counter # dict subclass for counting hashable objects
    OrderedDict # dict subclass that remembers the order entries were added
    defaultdict # dict subclass that calls a factory function to supply missing values

    UPDATE: As noted by a few in Hacker News I could have used Counter instead of defaultdict.

      >>> from collections import Counter
    >>> c = Counter("abracadabra")
    >>> c['a']
    5
  • When creating classes Python’s magic methods

      __eq__(self, other)      # Defines behavior for the equality operator, ==.
    __ne__(self, other) # Defines behavior for the inequality operator, !=.
    __lt__(self, other) # Defines behavior for the less-than operator, <.
    __gt__(self, other) # Defines behavior for the greater-than operator, >.
    __le__(self, other) # Defines behavior for the less-than-or-equal-to operator, <=.
    __ge__(self, other) # Defines behavior for the greater-than-or-equal-to operator, >=.

    There are several others.

  • Conditional Assignments

      x = 3 if (y == 1) else 2   It does exactly what it sounds like: "assign 3 to x if y is 1, otherwise assign 2 to x". You can also chain it if you have something more complicated:
    
      x = 3 if (y == 1) else 2 if (y == -1) else 1

    Though at a certain point, it goes a little too far.

    Note that you can use if … else in any expression. For example:

      (func1 if y == 1 else func2)(arg1, arg2)

    Here func1 will be called if y is 1 and func2, otherwise. In both cases the corresponding function will be called with arguments arg1 and arg2.

    Analogously, the following is also valid:

      x = (class1 if y == 1 else class2)(arg1, arg2)

    where class1 and class2 are two classes.

  • Use the Ellipsis when necessary.

    UPDATE: As one commenter mentioned in Hacker News “Using Ellipsis for getting all items is a violation of the Only One Way To Do It principle. The standard notation is [:].” I do agree with him. A better example is given using numpy in stackoverflow:

    The ellipsis is used to slice higher-dimensional data structures.

    It’s designed to mean at this point, insert as many full slices (:) to extend the multi-dimensional slice to all dimensions.

    Example:

      >>> from numpy import arange
    >>> a = arange(16).reshape(2,2,2,2)

    Now, you have a 4-dimensional matrix of order 2x2x2x2. To select all first elements in the 4th dimension, you can use the ellipsis notation

      >>> a[..., 0].flatten()
    array([ 0, 2, 4, 6, 8, 10, 12, 14])

    which is equivalent to

      >>> a[:,:,:,0].flatten()
    array([ 0, 2, 4, 6, 8, 10, 12, 14])

    Previous suggestion.

    When creating a class you can use __getitem__ to make you class’ object work like a dictionary. Take this class as an example:

      class MyClass(object):
    def __init__(self, a, b, c, d):
    self.a, self.b, self.c, self.d = a, b, c, d def __getitem__(self, item):
    return getattr(self, item) x = MyClass(10, 12, 22, 14)

    Because of __getitem__ you will be able to get the value of a in the object x by x['a']. This is probably a known fact.

    This object is used to extend the Python slicing.(http://docs.python.org/library/stdtypes.html#bltin-ellipsis-object). Thus if we add a clause:

      def __getitem__(self, item):
    if item is Ellipsis:
    return [self.a, self.b, self.c, self.d]
    else:
    return getattr(self, item)

    We can use x[...] to get a list containing all the items.

      >>> x = MyClass(11, 34, 23, 12)
    >>> x[...]
    [11, 34, 23, 12]

A few things to remember while coding in Python.的更多相关文章

  1. machine learning in coding(python):使用贪心搜索【进行特征选择】

    print "Performing greedy feature selection..." score_hist = [] N = 10 good_features = set( ...

  2. Python Coding Interview

    Python Coding Interview Python Advanced Use enumerate() to iterate over both indices and values Debu ...

  3. Python 3.4 send mail

    #coding=utf-8 #Python 3.4 https://docs.python.org/3.4/library/ #IDE:Visual Studio 2015 Window10 impo ...

  4. Artificial intelligence(AI)

    ORM: https://github.com/sunkaixuan/SqlSugar 微软DEMO: https://github.com/Microsoft/BotBuilder 注册KEY:ht ...

  5. Python基础算法综合:加减乘除四则运算方法

    #!usr/bin/env python# -*- coding:utf-8 -*-#python的算法加减乘除用符号:+,-,*,/来表示#以下全是python2.x写法,3.x以上请在python ...

  6. [No000078]Python3 字符串操作

    #!/usr/bin/env python3 # -*- coding: utf-8 -*- '''Python 字符串操作 string替换.删除.截取.复制.连接.比较.查找.包含.大小写转换.分 ...

  7. python for MSSQLserver

    # -*- coding: utf-8 -*- '''python coded by written in 2016/8/31 Used for get win os log for each win ...

  8. python for mysql

    # -*- coding: utf-8 -*- '''python coded by written in 2016/8/31 Used for get win os log for each win ...

  9. python3 实现简单的信用卡还款,取款转账功能V2

    仅实现还款,取款,转账,信息查询功能 程序结构: atm(函数主执行程序): #Author by Andy #_*_ coding:utf-8 _*_ import os,sys Father_pa ...

随机推荐

  1. 抛弃EF,20分构建一个属于自己的ORM框架

    Poiuyt_cyc 博客园首页新随笔联系订阅管理随笔 - 11  文章 - 0  评论 - 111 抛弃EF,20分构建一个属于自己的ORM框架 相信EF大家都不陌生了,因为数据库表跟程序实体是一一 ...

  2. poj 2923(状态压缩dp)

    题意:就是给了你一些货物的重量,然后给了两辆车一次的载重,让你求出最少的运输次数. 分析:首先要从一辆车入手,搜出所有的一次能够运的所有状态,然后把两辆车的状态进行合并,最后就是解决了,有两种方法: ...

  3. 防范 DDoS 攻击的 15 个方法

    为了对抗 DDoS(分布式拒绝服务)攻击,你需要对攻击时发生了什么有一个清楚的理解. 简单来讲,DDoS 攻击可以通过利用服务器上的漏洞,或者消耗服务器上的资源(例如 内存.硬盘等等)来达到目的.DD ...

  4. 类库从自带的配置文件中获取信息(DLL文件 获取 DLL文件自带的配置信息) z

    http://blog.csdn.net/shuaishifu/article/details/19602059 类库调用自身所带的配置文件中的配置信息,而不是读取应用程序所带的配置信息.代码如下: ...

  5. XML Schema 简介

    XML Schema 是基于 XML 的 DTD 替代者. XML Schema 可描述 XML 文档的结构. XML Schema 语言也可作为 XSD(XML Schema Definition) ...

  6. css3 --- 翻页动画 --- javascript --- 3d --- 准备

    用css3和javascript做一个翻页动画<知识准备部分> 如有更多疑问请参照:http://www.imooc.com/learn/77 这是用css3的-webkit-transi ...

  7. C++的类成员和类成员函数指针

    类成员函数指针: 用于访问类成员函数,和一般函数指针有区别. 类成员函数处理的是类数据成员,声明类成员函数指针的同时,还要指出具体是哪个类的函数指针才可以.调用时也要通过对象调用. 而对于类的静态成员 ...

  8. Spring的Bean的作用域

    singleton: * IOC中只存在一个共享的Bean实例,并且所有对bean的请求,只要id与该bean定义相匹配,则只会返回bean的同一实例 *  与单例模式区别:单例设计模式表示一个Cla ...

  9. C使用FILE指针文件操作

    文件的基本概念 所谓“文件”是指一组相关数据的有序集合. 这个数据集有一个名称,叫做文件名.实际上在前面的各章中我们已经多次使用了文件,例如源程序文件.目标文件.可执行文件.库文件 (头文件)等.文件 ...

  10. java getEnv不区分大小写 getProperty区分大小写

    System.out.println(System.getenv("JAVA_HOME")); System.out.println(System.getenv("Pat ...