D. Multipliers

题目连接:

http://codeforces.com/contest/615/problem/D

Description

Ayrat has number n, represented as it's prime factorization pi of size m, i.e. n = p1·p2·...·pm. Ayrat got secret information that that the product of all divisors of n taken modulo 109 + 7 is the password to the secret data base. Now he wants to calculate this value.

Input

The first line of the input contains a single integer m (1 ≤ m ≤ 200 000) — the number of primes in factorization of n.

The second line contains m primes numbers pi (2 ≤ pi ≤ 200 000).rst line of the input contains the string s — the coating that is present in the shop. Second line contains the string t — the coating Ayrat wants to obtain. Both strings are non-empty, consist of only small English letters and their length doesn't exceed 2100.

Output

Print one integer — the product of all divisors of n modulo 109 + 7.

Sample Input

2

2 3

Sample Output

36

Hint

题意

给你一个数的质因数,然后让你求出这个数所有因数的乘积

题解:

和hdu 5525很像,某场BC的原题

对于每个质因子,对答案的贡献为p^(d[p] * (d[p]-1) \ 2 * d[s])

d[p]表示p的因子数量,d[s]表示s这个数的因子数量

数量可以由因子数量定理求得,d[s] = (a1+1)(a2+1)...(an+1),a1.a2.a3表示s的质因子的次数。

但是由于指数可能很大,所以我们就需要使用费马小定理就好了

但是又有除2的操作,mod-1有不是质数,不存在逆元,所以先对2(mod-1)取模。

代码

#include<bits/stdc++.h>
using namespace std;
#define maxn 200005
long long mod = 1e9+7;
long long mod2 = 2LL*(mod - 1);
long long quickpow(long long a,long long b,long long c)
{
long long ans = 1;
while(b)
{
if(b&1)ans = ans * a % c;
a = a * a % c;
b>>=1;
}
return ans;
}
int cnt[maxn];
int p[maxn];
int vis[maxn];
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&p[i]);
cnt[p[i]]++;
}
long long tot = 1;
for(int i=1;i<=n;i++)
{
if(vis[p[i]])continue;
vis[p[i]]=1;
tot = tot*(cnt[p[i]]+1)%mod2;//求因子数
}
memset(vis,0,sizeof(vis));
long long ans = 1;
for(int i=1;i<=n;i++)
{
if(vis[p[i]])continue;
vis[p[i]]=1;
ans=ans*quickpow(p[i],(tot*cnt[p[i]]/2)%mod2,mod)%mod;//每个数的贡献,费马小定理
}
cout<<ans<<endl;
}

Codeforces Round #338 (Div. 2) D. Multipliers 数论的更多相关文章

  1. Codeforces Round #338 (Div. 2)

    水 A- Bulbs #include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 1 ...

  2. Codeforces Round #338 (Div. 2) E. Hexagons 讨论讨论

    E. Hexagons 题目连接: http://codeforces.com/contest/615/problem/E Description Ayrat is looking for the p ...

  3. Codeforces Round #338 (Div. 2) C. Running Track dp

    C. Running Track 题目连接: http://www.codeforces.com/contest/615/problem/C Description A boy named Ayrat ...

  4. Codeforces Round #338 (Div. 2) B. Longtail Hedgehog dp

    B. Longtail Hedgehog 题目连接: http://www.codeforces.com/contest/615/problem/B Description This Christma ...

  5. Codeforces Round #338 (Div. 2) A. Bulbs 水题

    A. Bulbs 题目连接: http://www.codeforces.com/contest/615/problem/A Description Vasya wants to turn on Ch ...

  6. Codeforces Round #338 (Div. 2) D 数学

    D. Multipliers time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  7. Codeforces Round #338 (Div. 2) B dp

    B. Longtail Hedgehog time limit per test 3 seconds memory limit per test 256 megabytes input standar ...

  8. Codeforces Round #392(Div 2) 758F(数论)

    题目大意 求从l到r的整数中长度为n的等比数列个数,公比可以为分数 首先n=1的时候,直接输出r-l+1即可 n=2的时候,就是C(n, 2)*2 考虑n>2的情况 不妨设公比为p/q(p和q互 ...

  9. Codeforces Round #338 (Div. 2) B. Longtail Hedgehog 记忆化搜索/树DP

    B. Longtail Hedgehog   This Christmas Santa gave Masha a magic picture and a pencil. The picture con ...

随机推荐

  1. 继承TextView简单画一个尺子

    import android.content.Context; import android.graphics.Canvas; import android.graphics.Color; impor ...

  2. Android 获取assets的绝对路径

    第一种方法:       String path = "file:///android_asset/文件名"; 第二种方法:    InputStream abpath = get ...

  3. 小数点输出精度控制问题 .xml

    pre{ line-height:1; color:#9f1d66; background-color:#d2d2d2; font-size:16px;}.sysFunc{color:#5d57ff; ...

  4. Win7+VS2013初试Thrift

    win7环境下VS2013编译boost_1_58_0步骤: 官网下载boost_1_58_0(直接下载),解压 cmd窗口cd到boost_1_58_0,执行bootstrap.bat cmd窗口获 ...

  5. visual assistent 过期

    VA功能超级好使,下载的一般都有时间限制,但又不想买正版. 我的是32位系统 vs2008: 将VA_X.dll文件拷到 (x86)C:\Program Files\Visual Assist X\ ...

  6. Tcl之Intro

    Tool command language, a widely used scripting tool that was deveoped for controlling and extending ...

  7. ninject学习笔记一:IOC的实现

    这篇文章主要介绍ninject在IOC方面的实现,至于IOC的含义,网络资源很丰富,我这儿就不再赘述了.官方的文档其实挺好的,只是本人英语很烂,看起来比较费劲,下面这些东西是看官方的代码推敲的,我觉得 ...

  8. 开源框架DNN简介以及安装

    donetnuke 是一款免费的开源cms框架,目前也有收费版,不过免费版也可以适应大家大部分的需求.我前些阵子是老板让我在20天内,做好一个官网并且发布,并且指定使用dnn这个框架,考虑到又可以学习 ...

  9. 流式计算之Storm简介

    Storm是一个分布式的.容错的实时计算系统,遵循Eclipse Public License 1.0,Storm可以方便地在一个计算机集群中编写与扩展复杂的实时计算,Storm之于实时处理,就好比H ...

  10. 使用ReflectionTestUtils解决依赖注入

    概述   当使用junit来测试Spring的代码时,为了减少依赖,需要给对象的依赖,设置一个mock对象,但是由于Spring可以使用@Autoware类似的注解方式,对私有的成员进行赋值,此时无法 ...