wireshark总结
拖延了两个月的总结!下面的很大一部分来自其它博客。
wireshark过滤器的区别
捕捉过滤器(CaptureFilters):用于决定将什么样的信息记录在捕捉结果中。需要在开始捕捉前设置。在Capture -> Capture Filters 中设置
显示过滤器(DisplayFilters):在捕捉结果中进行详细查找。他们可以在得到捕捉结果后随意修改。
两种过滤器的目的是不同的。
捕捉过滤器是数据经过的第一层过滤器,它用于控制捕捉数据的数量,以避免产生过大的日志文件。显示过滤器是一种更为强大(复杂)的过滤器。它允许您在日志文件中迅速准确地找到所需要的记录。
两种过滤器使用的语法是完全不同的。
捕捉过滤器
Protocol(协议):
可能的值:ether, fddi, ip, arp, rarp, decnet, lat, sca, moprc, mopdl, tcp and udp
如果没有特别指明是什么协议,则默认使用所有支持的协议。
Direction(方向):
可能的值: src, dst, src and dst, src or dst
如果没有特别指明来源或目的地,则默认使用 "src or dst" 作为关键字。
例如,"host 10.2.2.2"与"src or dst host 10.2.2.2"是一样的。
Host(s):
可能的值:net, port, host, portrange.
如果没有指定此值,则默认使用”host”关键字。
例如,"src 10.1.1.1"与"src host 10.1.1.1"相同。
Logical Operations(逻辑运算):
可能的值:not, and, or.
否(“not”)具有最高的优先级。或(“or”)和与(“and”)具有相同的优先级,运算时从左至右进行。
例如,
"not tcp port 3128 and tcp port 23″与”(not tcp port 3128) and tcp port 23"相同。
"not tcp port 3128 and tcp port 23″与”not (tcp port 3128 and tcp port 23)"不同。
例子:
tcp dst port 3128
//捕捉目的TCP端口为3128的封包。
ip src host 10.1.1.1
//捕捉来源IP地址为10.1.1.1的封包。
host 10.1.2.3
//捕捉目的或来源IP地址为10.1.2.3的封包。
ether host e0-05-c5-44-b1-3c
//捕捉目的或来源MAC地址为e0的封包。如果你想抓本机与所有外网通讯的数据包时,可以将这里的mac地址换成路由的mac地址即可。
src portrange 2000-2500
//捕捉来源为UDP或TCP,并且端口号在2000至2500范围内的封包。
not imcp
//显示除了icmp以外的所有封包。(icmp通常被ping工具使用)
src host 10.7.2.12 and not dst net 10.200.0.0/16
//显示来源IP地址为10.7.2.12,但目的地不是10.200.0.0/16的封包。
(src host 10.4.1.12 or src net 10.6.0.0/16) and tcp dst portrange 200-10000 and dst net 10.0.0.0/8
//捕捉来源IP为10.4.1.12或者来源网络为10.6.0.0/16,目的地TCP端口号在200至10000之间,并且目的位于网络 10.0.0.0/8内的所有封包。
src net 192.168.0.0/24
src net 192.168.0.0 mask 255.255.255.0
//捕捉源地址为192.168.0.0网络内的所有封包。
注意事项:
当使用关键字作为值时,需使用反斜杠"/"。
"ether proto /ip" (与关键字"ip"相同).
这样写将会以IP协议作为目标。
"ip proto /icmp" (与关键字"icmp"相同).
这样写将会以ping工具常用的icmp作为目标。
可以在"ip"或"ether"后面使用"multicast"及"broadcast"关键字。
当您想排除广播请求时,"no broadcast"就会非常有用。
Protocol(协议):
您可以使用大量位于OSI模型第2至7层的协议。点击"Expression…"按钮后,您可以看到它们。
比如:IP,TCP,DNS,SSH
String1, String2 (可选项):
协议的子类。
点击相关父类旁的"+"号,然后选择其子类。
Comparison operators (比较运算符):
可以使用6种比较运算符:
Logical expressions(逻辑运算符):
显示过滤器
例子:
1. 协议过滤
snmp || dns || icmp //显示SNMP或DNS或ICMP封包。
2. IP 过滤
ip.addr == 10.1.1.1 //显示来源或目的IP地址为10.1.1.1的封包。
ip.src != 10.1.2.3 or ip.dst != 10.4.5.6 //显示来源不为10.1.2.3或者目的不为10.4.5.6的封包。
换句话说,显示的封包将会为:
来源IP:除了10.1.2.3以外任意;目的IP:任意
以及
来源IP:任意;目的IP:除了10.4.5.6以外任意
ip.src != 10.1.2.3 and ip.dst != 10.4.5.6 //显示来源不为10.1.2.3并且目的IP不为10.4.5.6的封包。
换句话说,显示的封包将会为:
来源IP:除了10.1.2.3以外任意;同时须满足,目的IP:除了10.4.5.6以外任意
3. 端口过滤
tcp.port == 25 //显示来源或目的TCP端口号为25的封包。
tcp.dstport == 25 //显示目的TCP端口号为25的封包。
tcp.flags //显示包含TCP标志的封包。
tcp.flags.syn == 0×02 //显示包含TCP SYN标志的封包。
4. Http模式过滤
http.request.method=="GET", 只显示HTTP GET方法的。
5. 逻辑运算符为 AND/ OR
常用的过滤表达式
过滤表达式 用途
http 只查看HTTP协议的记录
ip.src ==192.168.1.102 or ip.dst==192.168.1.102 源地址或者目标地址是192.168.1.102
如果过滤器的语法是正确的,表达式的背景呈绿色。如果呈红色,说明表达式有误。
更为详细的说明请见:http://openmaniak.com/cn/wireshark_filters.php
以上只是抓包和简单的过滤,那么其实如果你要想达到能够分析这些网络包的要求时,还需要了解下一些数据包的标记,比如我们常说的TCP三次握手是怎么回事?
三次握手Three-way Handshake
一个虚拟连接的建立是通过三次握手来实现的
1. (Client) –> [SYN] –> (Server)
假如Client和Server通讯. 当Client要和Server通信时,Client首先向Server发一个SYN (Synchronize) 标记的包,告诉Server请求建立连接.
注意: 一个 SYN包就是仅SYN标记设为1的TCP包(参见TCP包头Resources). 认识到这点很重要,只有当Server收到Client发来的SYN包,才可建立连接,除此之外别无他法。因此,如果你的防火墙丢弃所有的发往外网接口的SYN包,那么你将不 能让外部任何主机主动建立连接。
2. (Client) <– [SYN/ACK] <–(Server)
接着,Server收到来自Client发来的SYN包后,会发一个对SYN包的确认包(SYN/ACK)给Client,表示对第一个SYN包的确认,并继续握手操作.
注意: SYN/ACK包是仅SYN 和 ACK 标记为1的包.
3. (Client) –> [ACK] –> (Server)
Client收到来自Server的SYN/ACK 包,Client会再向Server发一个确认包(ACK),通知Server连接已建立。至此,三次握手完成,一个TCP连接完成。
Note: ACK包就是仅ACK 标记设为1的TCP包. 需要注意的是当三此握手完成、连接建立以后,TCP连接的每个包都会设置ACK位。
这就是为何连接跟踪很重要的原因了. 没有连接跟踪,防火墙将无法判断收到的ACK包是否属于一个已经建立的连接.一般的包过滤(Ipchains)收到ACK包时,会让它通过(这绝对不是个 好主意). 而当状态型防火墙收到此种包时,它会先在连接表中查找是否属于哪个已建连接,否则丢弃该包。
四次握手Four-way Handshake
四次握手用来关闭已建立的TCP连接
1. (Client) –> ACK/FIN –> (Server)
2. (Client) <– ACK <– (Server)
3. (Client) <– ACK/FIN <– (Server)
4. (Client) –> ACK –> (Server)
注意: 由于TCP连接是双向连接, 因此关闭连接需要在两个方向上做。ACK/FIN 包(ACK 和FIN 标记设为1)通常被认为是FIN(终结)包.然而, 由于连接还没有关闭, FIN包总是打上ACK标记. 没有ACK标记而仅有FIN标记的包不是合法的包,并且通常被认为是恶意的。
连接复位Resetting a connection
四次握手不是关闭TCP连接的唯一方法. 有时,如果主机需要尽快关闭连接(或连接超时,端口或主机不可达),RST (Reset)包将被发送. 注意在,由于RST包不是TCP连接中的必须部分, 可以只发送RST包(即不带ACK标记). 但在正常的TCP连接中RST包可以带ACK确认标记
请注意RST包是可以不要收到方确认的?
无效的TCP标记Invalid TCP Flags
到目前为止,你已经看到了 SYN, ACK, FIN, 和RST 标记. 另外,还有PSH (Push) 和URG (Urgent)标记.
最常见的非法组合是SYN/FIN 包. 注意:由于 SYN包是用来初始化连接的, 它不可能和 FIN和RST标记一起出现. 这也是一个恶意攻击.
由于现在大多数防火墙已知 SYN/FIN 包, 别的一些组合,例如SYN/FIN/PSH, SYN/FIN/RST, SYN/FIN/RST/PSH。很明显,当网络中出现这种包时,很你的网络肯定受到攻击了。
别的已知的非法包有FIN (无ACK标记)和”NULL”包。如同早先讨论的,由于ACK/FIN包的出现是为了关闭一个TCP连接,那么正常的FIN包总是带有 ACK 标记。”NULL”包就是没有任何TCP标记的包(URG,ACK,PSH,RST,SYN,FIN都为0)。
到目前为止,正常的网络活动下,TCP协议栈不可能产生带有上面提到的任何一种标记组合的TCP包。当你发现这些不正常的包时,肯定有人对你的网络不怀好意。
UDP (用户数据包协议User Datagram Protocol)
TCP是面向连接的,而UDP是非连接的协议。UDP没有对接受进行确认的标记和确认机制。对丢包的处理是在应用层来完成的。(or accidental arrival).
此处需要重点注意的事情是:在正常情况下,当UDP包到达一个关闭的端口时,会返回一个UDP复位包。由于UDP是非面向连接的, 因此没有任何确认信息来确认包是否正确到达目的地。因此如果你的防火墙丢弃UDP包,它会开放所有的UDP端口(?)。
由于Internet上正常情况下一些包将被丢弃,甚至某些发往已关闭端口(非防火墙的)的UDP包将不会到达目的,它们将返回一个复位UDP包。
因为这个原因,UDP端口扫描总是不精确、不可靠的。
看起来大UDP包的碎片是常见的DOS (Denial of Service)攻击的常见形式 (这里有个DOS攻击的例子,http://grc.com/dos/grcdos.htm ).
ICMP (网间控制消息协议Internet Control Message Protocol)
如同名字一样, ICMP用来在主机/路由器之间传递控制信息的协议。 ICMP包可以包含诊断信息(ping, traceroute - 注意目前unix系统中的traceroute用UDP包而不是ICMP),错误信息(网络/主机/端口 不可达 network/host/port unreachable), 信息(时间戳timestamp, 地址掩码address mask request, etc.),或控制信息 (source quench, redirect, etc.) 。
你可以在http://www.iana.org/assignments/icmp-parameters 中找到ICMP包的类型。
尽管ICMP通常是无害的,还是有些类型的ICMP信息需要丢弃。
Redirect (5), Alternate Host Address (6), Router Advertisement (9) 能用来转发通讯。
Echo (8), Timestamp (13) and Address Mask Request (17) 能用来分别判断主机是否起来,本地时间 和地址掩码。注意它们是和返回的信息类别有关的。 它们自己本身是不能被利用的,但它们泄露出的信息对攻击者是有用的。
ICMP消息有时也被用来作为DOS攻击的一部分(例如:洪水ping flood ping,死 ping ?呵呵,有趣 ping of death)?/p>
包碎片注意A Note About Packet Fragmentation
如果一个包的大小超过了TCP的最大段长度MSS (Maximum Segment Size) 或MTU (Maximum Transmission Unit),能够把此包发往目的的唯一方法是把此包分片。由于包分片是正常的,它可以被利用来做恶意的攻击。
因为分片的包的第一个分片包含一个包头,若没有包分片的重组功能,包过滤器不可能检测附加的包分片。典型的攻击Typical attacks involve in overlapping the packet data in which packet header is 典型的攻击Typical attacks involve in overlapping the packet data in which packet header isnormal until is it overwritten with different destination IP (or port) thereby bypassing firewall rules。包分片能作为 DOS 攻击的一部分,它可以crash older IP stacks 或涨死CPU连接能力。
Netfilter/Iptables中的连接跟踪代码能自动做分片重组。它仍有弱点,可能受到饱和连接攻击,可以把CPU资源耗光。
OK,到此为止,关于Wireshark抓包工具的一些小教程已经写完了,而导致我想写这么一个纠结的教程的原因是,前几天通过这个抓包解决了梦幻西游在网维大师无盘上容易掉线的问题,当时捕捉到梦幻西游掉线时的数据包是这样的。
注意下图中的红色数据,123.58.184.241是梦幻西游的服务器,而192.168.1.41是玩梦幻西游的客户机,在掉线时,发现是先有梦幻西游的服务器向客户机发送一个[FIN,ACK]数据包,根据上面的解释,FIN标记的数据包是代表要断开连接的意思,而接着客户机又回给服务器一个确认断开链接包。当看到这个抓包数据时,就意识到,大家说的在网维大师系统虚拟盘上梦幻爱掉线的问题,并非普通的网络问题,因为通过数据包的信息来看,是梦幻服务器主动要求断开链接,产生这个情况无非是以下几个原因:
1、服务器发现客户端非法,比如有外挂什么的,踢掉了客户机;
2、服务器压力大,踢掉了客户机;
3、总之不是客户端问题导致的掉线;
那么既然结论是如此,为什么会有在网维大师系统虚拟盘上容易出现梦幻掉线问题呢?原因是由于网维大师系统虚拟盘是模拟真实硬盘方式来实现的,而在模拟过程中,将硬盘的序列号设置为固定过的OSDIY888了,而梦幻西游刚好后识别客户机硬盘信息,发现大量客户端的硬盘序列号都是一样的,就认为是作弊或者使用挂机外挂了,结果就导致随机被服务器踢下线的情况发生,后来我们将硬盘序列号设置为空,则没再出现该问题。这个问题在未来的新版本中会解决掉。
其它的一些介绍
网络层名词解析:view->name resolve->network layer
如果为官网的便携版,要用管理员角色
捕获界面有个Filter标签,那个其实是一个Display Filter按钮
引用
说得很详细的一篇文章
http://www.cnblogs.com/TankXiao/archive/2012/10/10/2711777.html
Wireshark抓包工具使用教程以及常用抓包规则
http://fangxin.blog.51cto.com/1125131/735178
如果看了这个你还是不会用Wireshark,那就来找我吧
https://community.emc.com/thread/194901
过滤器实例
http://3layer.blog.51cto.com/57448/964580
http://missuniverse110.blog.51cto.com/784017/738884
替代软件ntop/cacti
http://dl528888.blog.51cto.com/2382721/851461
微软的sniffer
wireshark总结的更多相关文章
- wireshark 相关提示
Packet size limited during capture 提示说明标记的包没有抓全,在某些操作系统中,默认只抓96个字节,tcpdump中有"-s"参数可用于 ...
- Wireshark
0. install Wireshark on Ubuntu 14 sudo apt-get install -y wireshark sudo addgroup -quiet -system wir ...
- 通过Wireshark抓包进行Cookie劫持
首先在目标A机器上运行Wireshark并开启浏览器,开启前关闭其他占用网络的软件,这里我拿51CTO.com做测试. 正常登陆51CTO用户中心,此时使用 http.cookie and http. ...
- 运维之网络安全抓包—— WireShark 和 tcpdump
------------------------------------------------本文章只解释抓包工具的捕获器和过滤器的说明,以及简单使用,应付日常而已----------------- ...
- 【转】[fix] Wireshark error: There are no interfaces on which a capture can be done. on Mac OS X
I got the following error message when trying to open a network interface for capture using Wireshar ...
- kali linux之窥看女神上网隐私(ettercap+wireshark+zenmap +dsniff)
作者:小波 http://www.cnblogs.com/xiaobo-Linux/ 无聊就玩了玩,不要干一些坏事哟~~网上也有一些文章关于kali linux的,就实战了一番.kali是用的debi ...
- Ubuntu16.04 LTS下apt安装WireShark
Ubuntu16.04 LTS下apt安装WireShark 安装与配置 首先通过apt安装WireShark: $ sudo apt install wireshark 会同时安装许多的依赖包,其中 ...
- wireshark lua脚本
1.目的:解析rssp2协议 2.如何使用wireshark lua插件 将编写的(假设为rssp2.lua)lua文本,放入wireshark 安装目录下,放哪里都行只要dofile添加了路径. ...
- 网络抓包wireshark(转)
转自 网络抓包wireshark 抓包应该是每个技术人员掌握的基础知识,无论是技术支持运维人员或者是研发,多少都会遇到要抓包的情况,用过的抓包工具有fiddle.wireshark,作为一个不是经 ...
- ubuntu下非root用户下获得使用wireshark的权限
在非root用户下不能使用wireshark用来抓包,所以需要进行以下操作: sudo groupadd wireshark sudo chgrp wireshark /usr/bin/dumpcap ...
随机推荐
- android141 360 安装软件管理
主界面: <LinearLayout xmlns:android="http://schemas.android.com/apk/res/andro ...
- java 技术体系
- 网络IPC:套接字
网络进程间通信(network IPC):不同计算机(通过网络相连)上运行的进程相互通信的机制. 套接字网络IPC接口:进程能够使用该接口和其他进程通信.通过该接口,其他进程运行位置是透明的,它们可以 ...
- Asp.net关闭弹出窗口刷新父窗口
通常情况下,关闭窗口时不需要对父窗口做任何操作,但如果子窗口是某一对象的修改画面,这时,当关闭子窗体时就需要对父窗口刷新,刷新可以通过三种方式来实现:1,采用window.opener.locatio ...
- c语言中的unsigned 和 signed
我们来一起看下,C语言中,对于Integer Type(整数形式)的unsigned与signed两种形式的区别,以及在内存中的存储方式是如何的 Integer type(整数形式)是C语言中的基本数 ...
- Spring 3.1 Environment Profiles--转载
原文地址:http://gordondickens.com/wordpress/2012/06/12/spring-3-1-environment-profiles/ Profiles Spring ...
- Helpers\URL
Helpers\URL The URL class is used for having handy methods or redirecting the page and returning the ...
- ASP.NET MVC and jqGrid 学习笔记 6-增删改操作
程序结构: Member.cs CRUD.cshtml CRUD.js HomeController 一.Model public class Member { [Key] public int No ...
- android文件系统挂载分析(1)---正常开机挂载
未完,更新中 ... "android"系列分为三部分: 1.正常开机挂载 2.encryption 3.dm-verity 我们知道android有很多分区,如"sys ...
- JavaScript版几种常见排序算法
今天发现一篇文章讲“JavaScript版几种常见排序算法”,看着不错,推荐一下原文:http://www.w3cfuns.com/blog-5456021-5404137.html 算法描述: * ...