Description

这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。

Input

第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。

Output

只有一行为k个子矩阵分值之和最大为多少。

Sample Input

3 2 2
1 -3
2 3
-2 3

Sample Output

9
第一感觉状压,然后就写了,然后就30分了,不知道是压的不对还是什么,反正我没调出来
后来就改了一下状态f[i][j][k]表示第一行选到了i,第二行选到了j,共k块
 #include<cstdio>
#include<iostream>
using namespace std;
int n,m,K,ans;
int f[][][],s1[],s2[],a[][];
int main(){
scanf("%d%d%d",&n,&m,&K);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) scanf("%d",&a[i][j]);
if(m==){
for(int i=;i<=n;i++) s1[i]=s1[i-]+a[i][];
for(int i=;i<=n;i++)
for(int k=;k<=K;k++){
f[i][][k]=f[i-][][k];
for(int j=;j<=i;j++){
f[i][][k]=max(f[i][][k],f[j-][][k-]+s1[i]-s1[j-]);
}
}
printf("%d",f[n][][K]);
}else{
for(int i=;i<=n;i++)
s1[i]=s1[i-]+a[i][],
s2[i]=s2[i-]+a[i][];
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=K;k++){
f[i][j][k]=max(f[i-][j][k],f[i][j-][k]);
for(int l=;l<=i;l++) f[i][j][k]=max(f[i][j][k],f[l-][j][k-]+s1[i]-s1[l-]);
for(int l=;l<=j;l++) f[i][j][k]=max(f[i][j][k],f[i][l-][k-]+s2[j]-s2[l-]);
if(i==j)for(int l=;l<=i;l++){
f[i][j][k]=max(f[i][j][k],f[l-][l-][k-]+s2[j]-s2[l-]+s1[i]-s1[l-]);
}
}
printf("%d",f[n][n][K]);
}
}

【BZOJ 1084】[SCOI2005]最大子矩阵的更多相关文章

  1. BZOJ 1084: [SCOI2005]最大子矩阵 DP

    1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...

  2. [BZOJ 1084] [SCOI2005] 最大子矩阵 【DP】

    题目链接:BZOJ - 1084 题目分析 我看的是神犇BLADEVIL的题解. 1)对于 m = 1 的情况, 首先可能不取 Map[i][1],先 f[i][k] = f[i - 1][k];   ...

  3. BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划

    传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...

  4. BZOJ: 1084: [SCOI2005]最大子矩阵

    NICE 的DP 题,明白了题解真是不错. Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1228  Solved: 622[Submit][Stat ...

  5. bzoj 1084: [SCOI2005]最大子矩阵【dp】

    分情况讨论,m=1的时候比较简单,设f[i][j]为到i选了j个矩形,前缀和转移一下就行了 m=2,设f[i][j][k]为1行前i个,2行前j个,一共选了k个,i!=j的时候各自转移同m=1,否则转 ...

  6. 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)

    1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...

  7. BZOJ(6) 1084: [SCOI2005]最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3566  Solved: 1785[Submit][Sta ...

  8. 1084: [SCOI2005]最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1325  Solved: 670[Submit][Stat ...

  9. 【BZOJ】1084: [SCOI2005]最大子矩阵(DP)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1084 有一个1A--- 本题没看懂,,不会啊囧..感觉完全设不了状态..看了题解,囧,m<=2 ...

  10. 1084: [SCOI2005]最大子矩阵 - BZOJ

    Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

随机推荐

  1. yii2.0的gii生成代码bug

    自动生成代码真的很好用,能减少很多基础代码的编写,如果这些基础代码一个个手动去敲,即枯燥乏味,还容易出错(话说人类真的不适合做单调重复的工作),yii框架的gii自动生成代码工具就能减少很多工作量.前 ...

  2. [改善Java代码]提防包装类型的null值

    建议26: 提防包装类型的null值 我们知道Java引入包装类型(Wrapper Types)是为了解决基本类型的实例化问题,以便让一个基本类型也能参与到面向对象的编程世界中.而在Java 5中泛型 ...

  3. oracle 中将字符转换为blob 类型

    示例如下: select id,mblx,mbmc,TO_BLOB(UTL_RAW.CAST_TO_RAW(mbsj))mbsj,qyid,qycode from tempuser.temp_cwht ...

  4. Python_sklearn机器学习库学习笔记(五)k-means(聚类)

    # K的选择:肘部法则 如果问题中没有指定 的值,可以通过肘部法则这一技术来估计聚类数量.肘部法则会把不同 值的成本函数值画出来.随着 值的增大,平均畸变程度会减小:每个类包含的样本数会减少,于是样本 ...

  5. Quartz Scheduler(2.2.1) - Usage of JobDataMap

    The JobDataMap can be used to hold any amount of (serializable) data objects which you wish to have ...

  6. ZooKeeper(3.4.5) - 原生 API 的简单示例

    一.创建会话 1. 创建一个基本的ZooKeeper会话实例 package com.huey.dream.demo; import java.util.concurrent.CountDownLat ...

  7. django 学习-11 Django模型数据模板呈现

    1.for author in Author.objects.all(): for book in author.book_set.all(): print   book 2.vim blog/vie ...

  8. android stack error message is Fail to start the plugin

    E: 08-26 16:34:11.934: E/AliSDK(32236): 错误编码 = 1002208-26 16:34:11.934: E/AliSDK(32236): 错误消息 = SDK  ...

  9. Activity Launch Mode

    launcherMode Activity如何被启动呢?Intent对象中与Activity启动相关的标志(FLAG_ACTIVITY_*)有四个.它们分别是: "standard" ...

  10. docker & nodejs

    Docker 部署 Node js demo程序 1.准备node js程序,使用express框架. mkdir demo 在demo文件夹下建立package.json { "name& ...