题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1024



Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.



Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define
a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).



Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im,
jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).



But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.

Process to the end of file.
 
Output
Output the maximal summation described above in one line.
 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6
8
 
Recommend
We have carefully selected several similar problems for you:  1074 1025 1081 1080 1160



分析

设状态为 cur[i,j],表示前 j 项分为 i 段的最大和,且第 i 段必须包含 data[j],则状态转移方程如下:

cur[i,j] = max{cur[i,j − 1] + data[j],max{cur[i − 1,t] + data[j]}}, 其中i ≤ j ≤ n,i − 1 ≤ t < j

target = max{cur[m,j]}, 其中m ≤ j ≤ n


分为两种情况:

• 情况一,data[j] 包含在第 i 段之中,cur[i,j − 1] + data[j]。

• 情况二,data[j] 独立划分成为一段,max{cur[i − 1,t] + data[j]}。

观察上述两种情况可知 cur[i,j] 的值只和 cur[i,j-1] 和 cur[i-1,t] 这两个值相关,因此不需要二维数组,

可以用滚动数组,只需要两个一维数组,用 cur[j] 表示现阶段的最大值,即 cur[i,j − 1] + data[j],用

pre[j] 表示上一阶段的最大值,即 max{cur[i − 1,t] + data[j]}。

#include <stdio.h>
#include <stdlib.h>
#include <limits.h> int MaxSum(int * data, int m, int n){
int i, j, max_sum;
int * cur = (int *)calloc(n + 1, sizeof(int));
int * pre = (int *)calloc(n + 1, sizeof(int));
data = data - 1; //data下标从0开始, cur、pre下标从1开始,为使下标一致,data减1
for (i = 1; i <= m; ++i){
max_sum = INT_MIN;
for (j = i; j <= n; ++j){
if (cur[j - 1] < pre[j - 1])
cur[j] = pre[j - 1] + data[j];
else
cur[j] = cur[j - 1] + data[j];
pre[j - 1] = max_sum;
if (max_sum < cur[j])
max_sum = cur[j];
}
pre[j - 1] = max_sum;
}
free(cur);
free(pre);
return max_sum;
} int main(void){
int m, n, i, *data;
while (scanf("%d%d", &m, &n) != EOF){
data = (int *)malloc(sizeof(int) * n);
for (i=0; i<n; ++i){
scanf("%d", &data[i]);
}
printf ("%d\n", MaxSum(data, m, n));
free(data);
} return 0;
}

参考资料:ACM Cheat Sheet

HDOJ 1024 Max Sum Plus Plus -- 动态规划的更多相关文章

  1. HDU 1024 Max Sum Plus Plus [动态规划+m子段和的最大值]

    Max Sum Plus Plus Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  2. hdu 1024 Max Sum Plus Plus (动态规划)

    Max Sum Plus PlusTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  3. HDU 1024 Max Sum Plus Plus (动态规划 最大M字段和)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

  4. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  5. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  6. hdu1003 1024 Max Sum&Max Sum Plus Plus【基础dp】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4302208.html   ---by 墨染之樱花 dp是竞赛中常见的问题,也是我的弱项orz, ...

  7. HDU 1024 Max Sum Plus Plus(m个子段的最大子段和)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/ ...

  8. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU 1024 Max Sum Plus Plus (动态规划、最大m子段和)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. <property name="current_session_context_class">thread</property> 属性

    <property name="current_session_context_class">thread</property>这个属性的作用:这样配置是本 ...

  2. centos7 挂载ntfs移动硬盘

    第一步:下载安装rpmforge ,下载地址 http://pkgs.repoforge.org/rpmforge-release/  安装 rpm -ivh rpmforge-release-0.5 ...

  3. URL是否有效

    unit Unit1;interfaceuses    Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, Syste ...

  4. kettle參数、变量具体解说

    kettle參数.变量具体解说 kettle 3.2 曾经的版本号里仅仅有 variable 和 argument,kettle 3.2 中.又引入了 parameter 概念.variable 即e ...

  5. MySQL to Redis

    [TOC] 简介 使用mysql2redis可以非常便捷的将mysql中的数据导出到redis中去, 通常是需要一个select语句即可实现. 软件安装 // 安装apr + apr-util $ w ...

  6. TQ210裸机编程(2)——LED流水灯

    两个文件start.S和led.c start.S .global _start                @声明一个全局的标号 _start:     bl main               ...

  7. Linux性能及调优指南(翻译)之Linux内存架构

    http://blog.csdn.net/ljianhui/article/details/46734115

  8. 二、Socket之UDP异步传输文件

    上一篇文章一.Socket之UDP异步传输文件中,实现了文件的基本传输,但是传输过程中的信息是看不到的,这一篇是对上一篇进行了一些改进,并且可以了解传输的信息(加入了Log),还加入了接收或者拒绝接收 ...

  9. qt 总结

    Qt中的每个类,都有一个对应的同名头文件,其中包含其类定义.例如要使用QApplication类,则需要在程序中添加" #include <QApplication>" ...

  10. global 用法

    <?php//$GLOBALS['he']="hechunhuae";function Test(){ //global $he; $GLOBALS['he']=" ...