BZOJ_1019_[SHOI2008]_汉诺塔_(DP)
描述
http://www.lydsy.com/JudgeOnline/problem.php?id=1019
汉诺塔游戏,但是有移动优先级,在不违反原有规则的情况下,给定优先移动目标.求完成游戏所需的步数.
分析
我们用\(f[j][i]\)表示把第\(j\)个柱子上的最上面\(i\)个盘子移走所需的步数,用\(g[j][i]\)表示会移动到哪个柱子上.
那么对于\(f[j][i]\),首先把前\(i-1\)个移出去,步数为\(f[j][i-1]\),记移到了柱子\(y\),这时候再把第\(i\)个盘子移到\(3-j-y=z\)柱子上去.
接下来就是把\(y\)上的\(i-1\)个盘子移动到\(z\)上去.分两种情况:
1.\(g[y][i-1]=z\),这样直接移动就可以了.$$f[j][i]=f[j][i-1]+1+f[y][i-1]$$
2.\(g[y][i-1]=j\),这种情况要先把\(i-1\)个盘子移动到\(j\)上去,再把第\(i\)个移动到\(y\)上去,再把\(i-1\)个移动到\(y\)上去.
$$f[j][i]=f[j][i-1]+1+f[y][i-1]+1+f[j][i-1]$$
#include <bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn=+;
int n,r[],g[][maxn];
ll f[][maxn];
char s[];
bool vis[];
inline void solve(){
for(int i=;i<=n;i++)for(int j=;j<;j++){
int y=g[j][i-],z=-y-j; f[j][i]=f[j][i-]+;
if(z==g[y][i-]){f[j][i]+=f[y][i-];g[j][i]=z;}
else{f[j][i]+=f[y][i-]++f[j][i-];g[j][i]=y;}
}
printf("%lld\n",f[][n]);
}
inline void init(){
scanf("%d",&n);
for(int i=;i<;i++){
scanf("%s",s);
int from=s[]-'A',to=s[]-'A';
if(vis[from]) continue;
vis[from]=true; g[from][]=to; f[from][]=;
}
}
int main(){
init();
solve();
return ;
}
1019: [SHOI2008]汉诺塔
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 1278 Solved: 789
[Submit][Status][Discuss]
Description
汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成。一开始n个盘子都摞在柱子A上,
大的在下面,小的在上面,形成了一个塔状的锥形体。
对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移
动的盘子一定放在比它更大的盘子上面(如果移动到空柱子上就不需要满足这个要求)。我们可以用两个字母来描
述一次操作:第一个字母代表起始柱子,第二个字母代表目标柱子。例如,AB就是把柱子A最上面的那个盘子移到
柱子B。汉诺塔的游戏目标是将所有的盘子从柱子A移动到柱子B或柱子C上面。有一种非常简洁而经典的策略可以帮
助我们完成这个游戏。首先,在任何操作执行之前,我们以任意的次序为六种操作(AB、AC、BA、BC、CA和CB)
赋予不同的优先级,然后,我们总是选择符合以下两个条件的操作来移动盘子,直到所有的盘子都从柱子A移动到
另一根柱子:(1)这种操作是所有合法操作中优先级最高的;(2)这种操作所要移动的盘子不是上一次操作所移
动的那个盘子。可以证明,上述策略一定能完成汉诺塔游戏。现在你的任务就是假设给定了每种操作的优先级,计
算按照上述策略操作汉诺塔移动所需要的步骤数。
Input
输入有两行。第一行为一个整数n(1≤n≤30),代表盘子的个数。第二行是一串大写的ABC字符,代表六种操
作的优先级,靠前的操作具有较高的优先级。每种操作都由一个空格隔开。
Output
只需输出一个数,这个数表示移动的次数。我们保证答案不会超过10的18次方。
Sample Input
AB BC CA BA CB AC
Sample Output
HINT
Source
BZOJ_1019_[SHOI2008]_汉诺塔_(DP)的更多相关文章
- 【BZOJ 1019】 1019: [SHOI2008]汉诺塔 (DP?)
1019: [SHOI2008]汉诺塔 Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一 ...
- java实现组合数_n!_杨辉三角_组合数递推公式_回文数_汉诺塔问题
一,使用计算机计算组合数 1,设计思想 (1)使用组合数公式利用n!来计算Cn^k=n!/k!(n-k)!用递推计算阶乘 (2)使用递推的方法用杨辉三角计算Cn+1^k=Cn^k-1+Cn^k 通过数 ...
- python数据结构_递归_汉诺塔问题
已经不是第一次写这个汉诺塔问题, 其实递归还真是不太好理解, 因为递归这种是想其实有点反人类, 为什么? 因为不太清楚, 写个循环一目了然, 用递归其实要把核心逻辑理清楚, 要不根本没法进行下去 所有 ...
- 【BZOJ】【1019】【SHOI2008】汉诺塔
递推/DP 类似普通汉诺塔的一个递推(模拟?$10^{18}$没法模拟吧…… 题解:http://blog.csdn.net/regina8023/article/details/43016813 因 ...
- 【BZOJ 1019】【SHOI2008】汉诺塔(待定系数法递推)
1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 559 Solved: 341[Submit][Status] ...
- hdu 1207 汉诺塔II (DP+递推)
汉诺塔II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- 【ACwing 96】奇怪的汉诺塔——区间dp
(题面来自ACwing) 汉诺塔问题,条件如下: 1.这里有A.B.C和D四座塔. 2.这里有n个圆盘,n的数量是恒定的. 3.每个圆盘的尺寸都不相同. 4.所有的圆盘在开始时都堆叠在塔A上,且圆盘尺 ...
- 2020牛客寒假算法基础集训营6 C 汉诺塔 (dp 最长下降子序列)
https://ac.nowcoder.com/acm/contest/3007/C 将木板按照Xi从小到大排序,将这时的Yi数列记为Zi数列,则问题变成将Zi划分为尽可能少的若干组上升子序列. 根据 ...
- 【LintCode·容易】用栈模拟汉诺塔问题
用栈模拟汉诺塔问题 描述 在经典的汉诺塔问题中,有 3 个塔和 N 个可用来堆砌成塔的不同大小的盘子.要求盘子必须按照从小到大的顺序从上往下堆 (如:任意一个盘子,其必须堆在比它大的盘子上面).同时, ...
随机推荐
- php连接ftp
PHP连接ftp,发现一个很好用的类库phpseclib.英文原文 Connecting to SFTP with PHP If you need to connect to SFTP using P ...
- 数据可视化(三)- Seaborn简易入门
本文内容来源:https://www.dataquest.io/mission/133/creating-compelling-visualizations 本文数据来源:http://www.cdc ...
- 【生活】已经从官网购买iPad,单独购买AppleCare+服务
1 什么是AppleCare+服务 从苹果官网购买的硬件产品如ipad.iphone和MacBook等,官网承诺的保修期限是一年.AppleCare+是水果公司推出的一种保修服务,最大的特点就是将保修 ...
- iomanip,setw(),setw: undeclared identifier
今天使用setw(),提示setw: undeclared identifier,上网查了下,原来是没有包含头文件iomanip,现摘录如下: iomanip #include <iomanip ...
- Linux内核中的常用宏container_of
Container_of在Linux内核中是一个常用的宏,用于从包含在某个结构中的指针获得结构本身的指针,通俗地讲就是通过结构体变量中某个成员的首地址进而获得整个结构体变量的首地址. Containe ...
- JVM的组成部分与内存管理
JVM的组成部分与内存管理 JVM区域划分 由于Java程序是交由JVM执行的,所以我们在谈Java内存区域划分的时候事实上是指JVM内存区域划分.在讨论JVM内存区域划分之前,先来看一下Java程序 ...
- 扎克伯格谈Facebook创业过程
第一课:Facebook的产品研发 (1)不仅注重用户体验,更关注程序本身对社会和产品的是否有益,进而对产品做出调整 (2)以学校为标准作为群组来划分,就是对产品进行了思考后决定的,不管是直觉决定还是 ...
- hibernateTemplate的load方法
hibernateTemplate的load方法采用延迟加载,所以应当注意. 如果配置不当,采用此方法获取对象,往往会出现异常: javax.servlet.ServletException: org ...
- 利用手上的UI资源(附免费UI工具包)
http://www.uisdc.com/how-to-use-ui-kits# 大家都知道,UI工具包里有很多好看的资源:比如按钮.滑块.面包屑.播放器.表单,甚至是一个"赞!" ...
- spark storage之SparkEnv
此文旨在对spark storage模块进行分析,整理自己所看所得,等以后再整理. ok,首先看看SparkContext中sparkEnv相关代码: private[spark] def creat ...