题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768

给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi.

比较明显的中国剩余定理+容斥,容斥的时候每次要加上个(%7=0)这一组。

中间会爆longlong,所以在其中加上个快速乘法(类似快速幂)。因为普通的a*b是直接a个b相加,很可能会爆。但是你可以将b拆分为二进制来加a,这样又快又可以防爆。

 //#pragma comment(linker, "/STACK:102400000, 102400000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
typedef pair <int, int> P;
const int N = 1e5 + ;
LL a[] , b[], fuck = 1e18; LL Fmul(LL a , LL n , LL mod) { //快速乘法
LL res = ;
while(n) {
if(n & ) {
res = (res + a) % mod;
}
a = a * % mod;
n >>= ;
}
return res;
} LL exgcd(LL a , LL b , LL &x , LL &y) {
LL res = a;
if(!b) {
x = ;
y = ;
}
else {
res = exgcd(b , a % b , x , y);
LL temp = x;
x = y;
y = temp - a / b * y;
}
return res;
} LL CRT(LL a[] , LL m[] , LL n) {
LL M = , res = ;
for(LL i = ; i <= n ; i++) {
M = M * m[i];
}
for(LL i = ; i <= n ; i++) {
LL x , y , Mi = M / m[i];
exgcd(Mi , m[i] , x , y);
x = (x % m[i] + m[i]) % m[i];
res = (res + Fmul(x * a[i] % M , Mi , M) + M) % M;
}
if(res < )
res += M;
return res;
} LL Get(LL n, LL x, LL y) {
if(x > n)
return ;
else {
n -= x;
return (LL)( + n / y);
}
} int main()
{
int t, n;
LL l , r , md[], di[];
scanf("%d", &t);
for(int ca = ; ca <= t; ++ca) {
scanf("%d %lld %lld", &n, &l, &r);
di[] = , md[] = ;
for(int i = ; i <= n; ++i) {
scanf("%lld %lld", a + i, b + i);
}
LL res1 = , res2 = ;
int limit = ( << n) - ;
for(int i = ; i <= limit; ++i) {
int temp = i, index = ;
LL mul = ;
for(int j = ; temp ; ++j) {
if(temp & ) {
di[++index] = a[j];
md[index] = b[j];
mul *= a[j];
}
temp >>= ;
}
if(index % ) {
res1 -= Get(l - , CRT(md, di, index), mul);
res2 -= Get(r, CRT(md, di, index), mul);
}
else {
res1 += Get(l - , CRT(md, di, index), mul);
res2 += Get(r, CRT(md, di, index), mul);
}
}
printf("Case #%d: %lld\n",ca, r/ - (l-)/ - (res2 - res1));
}
return ;
}

HDU 5768 Lucky7 (中国剩余定理+容斥)的更多相关文章

  1. hdu 5768 Lucky7 中国剩余定理+容斥+快速乘

    Lucky7 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem D ...

  2. HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)

    Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  3. hdu_5768_Lucky7(中国剩余定理+容斥)

    题目链接:hdu_5768_Lucky7 题意: 给你一个区间,问你这个区间内是7的倍数,并且满足%a[i]不等于w[i]的数的个数 乍一看以为是数位DP,仔细看看条件,发现要用中国剩余定理,然后容斥 ...

  4. HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)

    When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...

  5. hdu 5768 Lucky7 容斥

    Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  6. HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)

    分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...

  7. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

  8. HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)

    题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...

  9. HDU 5768 Lucky7(CRT+容斥原理)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首 ...

随机推荐

  1. hdu 1257 最少拦截系统(简单贪心)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1257 虽然分类是dp感觉还是贪心 比较水 #include <iostream> #inclu ...

  2. bzoj2482

    还是像以前那样维护下次出现位置,计算影响 其实不难,思维盲点,受到做最大子段和的影响 其实这里可以直接维护当前每个位置的子段和,再记录一个历史最大和 当然tag也需要记录当前tag和历史(距离上次pu ...

  3. LA 2402 (枚举) Fishnet

    题意: 正方形四个边界上分别有n个点,将其划分为(n+1)2个四边形,求四边形面积的最大值. 分析: 因为n的规模很小,所以可以二重循环枚举求最大值. 求直线(a, 0) (b, 0) 和直线(0, ...

  4. web交互方式

    轮询:客户端定时向服务器发送Ajax请求,服务器接到请求后马上返回响应信息并关闭连接. 优点:后端程序编写比较容易. 缺点:请求中有大半是无用,浪费带宽和服务器资源. 实例:适于小型应用. 长轮询:客 ...

  5. LintCode: isSubTree

    Title: 有两个不同大小的二进制树: T1 有上百万的节点: T2 有好几百的节点.请设计一种算法,判定 T2 是否为 T1的子树 class Solution { public: /** * @ ...

  6. LeetCode: Sorted Color

    Title: Given an array with n objects colored red, white or blue, sort them so that objects of the sa ...

  7. 判断DataSet是否有数据

    if (data1.Tables[0].Rows.Count>0)        {            MessageInfoText.Text = data1.Tables[0].Rows ...

  8. 类装载器ClassLoader

    类装载器工作机制 类装载器就是寻找类的节码文件并构造出类在JVM内部表示对象的组件.在Java中,类装载器把一个类装入JVM中,要经过以下步骤: [1.]装载:查找和导入Class文件: [2.]链接 ...

  9. 《C++ primer》--第10章

    习题10.21 解释map和set容器的差别,以及他们各自适用的情况. 解答: map容器和set容器的差别在于: map容器是键-值对的集合,而set容器只是键的集合: map类型适用于需要了解键与 ...

  10. linux命令——磁盘命令mkdir

    一.介绍 mkdir 命令用于创建文件夹或目录(类似dos下的md命令),要求创建目录的用户在当前目录中具有写权限, 并且指定目录名不能是当前目录中已有的目录或文件名称.名称区分大小写. 二.用法及参 ...