分析:因为加起来不超过1e6,所以最多有1000+个不同的数

做法:离散化搞就好了

#include <cstdio>
#include <iostream>
#include <ctime>
#include <vector>
#include <cmath>
#include <map>
#include <queue>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int N=1e5+;
const int INF=0x3f3f3f3f;
const int mod=1e9+;
int a[N],b[N],c[N],k1[N],k2[N];
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m)){
for(int i=;i<=n;++i){
scanf("%d",&a[i]);
c[i]=a[i];
}
sort(a+,a++n);
int cnt1=unique(a+,a++n)-a-;
memset(k1,,sizeof(k1));
for(int i=;i<=n;++i){
++k1[lower_bound(a+,a++cnt1,c[i])-a];
}
for(int i=;i<=m;++i){
scanf("%d",&b[i]);
c[i]=b[i];
}
sort(b+,b++m);
int cnt2=unique(b+,b++m)-b-;
memset(k2,,sizeof(k2));
for(int i=;i<=m;++i){
++k2[lower_bound(b+,b++cnt2,c[i])-b];
}
LL ret=;
for(int i=;i<=cnt1;++i){
for(int j=;j<=cnt2;++j){
LL tmp=sqrt(abs(a[i]-b[j]));
ret+=1ll*k1[i]*k2[j]*tmp;
}
}
printf("%I64d\n",ret);
}
return ;
}

XTUOJ1250 Super Fast Fourier Transform 暴力的更多相关文章

  1. 1250 Super Fast Fourier Transform(湘潭邀请赛 暴力 思维)

    湘潭邀请赛的一题,名字叫"超级FFT"最终暴力就行,还是思维不够灵活,要吸取教训. 由于每组数据总量只有1e5这个级别,和不超过1e6,故先预处理再暴力即可. #include&l ...

  2. XTU 1250 Super Fast Fourier Transform

    $2016$长城信息杯中国大学生程序设计竞赛中南邀请赛$H$题 排序,二分. 对$a$数组,$b$数组从小到大进行排序. 统计每一个$a[i]$作为较大值的时候与$b[i]$对答案的贡献.反过来再统计 ...

  3. 数字图像处理实验(5):PROJECT 04-01 [Multiple Uses],Two-Dimensional Fast Fourier Transform 标签: 图像处理MATLAB数字图像处理

    实验要求: Objective: To further understand the well-known algorithm Fast Fourier Transform (FFT) and ver ...

  4. 「学习笔记」Fast Fourier Transform

    前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是 ...

  5. 【OI向】快速傅里叶变换(Fast Fourier Transform)

    [OI向]快速傅里叶变换(Fast Fourier Transform) FFT的作用 ​ 在学习一项算法之前,我们总该关心这个算法究竟是为了干什么. ​ (以下应用只针对OI) ​ 一句话:求多项式 ...

  6. Fast Fourier Transform

    写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34 ...

  7. Fast Fourier Transform ——快速傅里叶变换

    问题: 已知$A=a_{0..n-1}$, $B=b_{0..n-1}$, 求$C=c_{0..2n-2}$,使: $$c_i = \sum_{j=0}^ia_jb_{i-j}$$ 定义$C$是$A$ ...

  8. 快速傅里叶变换(Fast Fourier Transform, FFT)和短时傅里叶变换(short-time Fourier transform,STFT )【资料整理】【自用】

    1. 官方形象展示FFT:https://www.bilibili.com/video/av19141078/?spm_id_from=333.788.b_636f6d6d656e74.6 2. 讲解 ...

  9. Python FFT (Fast Fourier Transform)

    np.fft.fft import matplotlib.pyplot as plt import plotly.plotly as py import numpy as np # Learn abo ...

随机推荐

  1. PowerDesigner 逆向工程 从SQL文件转换成PDM 从PDM转成CDM

    从SQL文件逆向工程到PDM: ①选择file -> Reverse Engineer - > Database ②在General选项卡中选择MySQL数据库,点击确定. ③using ...

  2. [topcoder] EllysNumberGuessing

    http://community.topcoder.com/stat?c=problem_statement&pm=12975 简单题 #include <cstdlib> #in ...

  3. 三个特殊资源目录 /res/xml /res/raw 和 /assets

    在android开发中,我们离不开资源文件的使用,从drawable到string,再到layout,这些资源都为我们的开发提供了极大的便利,不过我们平时大部分时间接触的资源目录一般都是下面这三个. ...

  4. 面试题_48_to_65_Java 集合框架的面试题

    这部分也包含数据结构.算法及数组的面试问题 48) List.Set.Map 和 Queue 之间的区别(答案)List 是一个有序集合,允许元素重复.它的某些实现可以提供基于下标值的常量访问时间,但 ...

  5. Codeforces Round #247 (Div. 2) C. k-Tree (dp)

    题目链接 自己的dp, 不是很好,这道dp题是 完全自己做出来的,完全没看题解,还是有点进步,虽然这个dp题比较简单. 题意:一个k叉树, 每一个对应权值1-k, 问最后相加权值为n, 且最大值至少为 ...

  6. POJ2135 最小费用最大流模板题

    练练最小费用最大流 此外此题也是一经典图论题 题意:找出两条从s到t的不同的路径,距离最短. 要注意:这里是无向边,要变成两条有向边 #include <cstdio> #include ...

  7. 结构体mem_pool_t

    /** Memory area header */ typedef struct mem_area_struct mem_area_t; /** Memory pool */ typedef stru ...

  8. BootStrap弹窗

    效果图: 注意引入的文件,js文件要在前面 Bootstrap框架中的模态弹出框,分别运用了“modal”.“modal-dialog”和“modal-content”样式,而弹出窗真正的内容都放置在 ...

  9. LA 3357 (递推 找规律) Pinary

    n位不含前导零不含连续1的数共有fib(n)个,fib(n)为斐波那契数列. 所以可以预处理一下fib的前缀和,查找一下第n个数是k位数,然后再递归计算它是第k位数里的多少位. 举个例子,比如说要找第 ...

  10. Google发布SSLv3漏洞简要分析报告

    今天上午,Google发布了一份关于SSLv3漏洞的简要分析报告.根据Google的说法,该漏洞贯穿于所有的SSLv3版本中,利用该漏洞,黑客可以通过中间人攻击等类似的方式(只要劫持到的数据加密两端均 ...