高并发网络编程之epoll详解
select、poll和epoll的区别
在linux没有实现epoll事件驱动机制之前,我们一般选择用select或者poll等IO多路复用的方法来实现并发服务程序。在大数据、高并发、集群等一些名词唱的火热之年代,select和poll的用武之地越来越有限了,风头已经被epoll占尽。
select()和poll() IO多路复用模型
select的缺点:
- 单个进程能够监视的文件描述符的数量存在最大限制,通常是1024,当然可以更改数量,但由于select采用轮询的方式扫描文件描述符,文件描述符数量越多,性能越差;
- 内核/用户空间内存拷贝问题,select需要复制大量的句柄数据结构,产生巨大的开销
- select返回的是含有整个句柄的数组,应用程序需要遍历整个数组才能发现哪些句柄发生了事件;
- select的触发方式是水平触发,应用程序如果没有完成对一个已经就绪的文件描述符进行IO,那么之后再次select调用还是会将这些文件描述符通知进程。
相比于select模型,poll使用链表保存文件描述符,因此没有了监视文件数量的限制,但其他三个缺点依然存在。
拿select模型为例,假设我们的服务器需要支持100万的并发连接,则在_FD_SETSIZE为1024的情况下,则我们至少需要开辟1k个进程才能实现100万的并发连接。除了进程间上下文切换的时间消耗外,从内核/用户空间大量的无脑内存拷贝、数组轮询等,是系统难以承受的。因此,基于select模型的服务器程序,要达到10万级别的并发访问,是一个很难完成的任务。
epoll IO多路复用模型实现机制
由于epoll的实现机制与select/poll机制完全不同,上面所说的select的缺点在epoll上不复存在。
设想一下如下场景:有100万个客户端同时与一个服务器进程保持着TCP连接。而每一时刻,通常只有几百上千个TCP连接是活跃的。如何实现这样的高并发?
在select/poll时代,服务器进程每次都把这100万个连接告诉操作系统(从用户态复制句柄数据结构到内核态),让操作系统内核去查询这些套接字上是否有事件发生,轮询完后,再将句柄数据复制到用户态,让服务器应用程序轮询处理已发生的网络事件,这一过程资源消耗较大,因此,select/poll一般只能处理几千的并发连接。
epoll的设计和实现select完全不同。epoll通过在linux内核中申请一个简易的文件系统(文件系统一般用什么数据结构实现?B+树)。把原先的select/poll调用分成了3个部分:
1)调用epoll_create()建立一个epoll对象(在epoll文件系统中为这个句柄对象分配资源)
2)调用epoll_ctl向epoll对象中添加这100万个连接的套接字
3)调用epoll_wait收集发生的事件的连接
如此一来,要实现上面说的场景,只需要在进程启动时建立一个epoll对象,然后在需要的时候向这个epoll对象中添加或者删除连接。同时,epoll_wait的效率也非常高,因为调用epoll_wait时,并没有一股脑的向操作系统复制这100万个连接的句柄数据,内核也不需要去遍历全部的连接。
上面的3个部分非常清晰,首先要调用epoll_create创建一个epoll对象。然后使用epoll_ctl可以操作上面建立的epoll对象,例如,将刚建立的socket加入到epoll中让其监控,或者把epoll正在监控的某个socket句柄移出epoll,不再监控它等等。
epoll_wait在调用时,在给定的timeout时间内,当在监控的所有句柄中有事件发生时,就返回用户态的进程。
从上面的调用方式就可以看到epoll比select/poll的优越之处:因为后者每次调用时都要传递你所要监控的所有socket给select/poll系统调用,这意味着需要将用户态的socket列表copy到内核态,如果以万计的句柄会导致每次都要copy几十几百KB的内存到内核态,非常低效。而我们调用epoll_wait时就相当于以往调用select/poll,但是这时却不用传递socket句柄给内核,因为内核已经在epoll_ctl中拿到了要监控的句柄列表。
所以,实际上在你调用epoll_create后,内核就已经在内核态开始准备帮你存储要监控的句柄了,每次调用epoll_ctl只是在往内核的数据结构里塞入新的socket句柄。
在内核里,一切皆文件。所以,epoll向内核注册了一个文件系统,用于存储上述的被监控socket。当你调用epoll_create时,就会在这个虚拟的epoll文件系统里创建一个file结点。当然这个file不是普通文件,它只服务于epoll。
epoll在被内核初始化时(操作系统启动),同时会开辟出epoll自己的内核高速cache区,用于安置每一个我们想监控的socket,这些socket会以红黑树的形式保存在内核cache里,以支持快速的查找、插入、删除。这个内核高速cache区,就是建立连续的物理内存页,然后在之上建立slab层,简单的说,就是物理上分配好你想要的size的内存对象,每次使用时都是使用空闲的已分配好的对象。
epoll的高效就在于,当我们调用epoll_ctl往里塞入百万个句柄时,epoll_wait仍然可以飞快的返回,并有效的将发生事件的句柄给我们用户。这是由于我们在调用epoll_create时,内核除了帮我们在epoll文件系统里建了个file结点,在内核cache里建了个红黑树用于存储以后epoll_ctl传来的socket外,还会再建立一个list链表,用于存储准备就绪的事件,当epoll_wait调用时,仅仅观察这个list链表里有没有数据即可。有数据就返回,没有数据就sleep,等到timeout时间到后即使链表没数据也返回。所以,epoll_wait非常高效。
而且,通常情况下即使我们要监控百万计的句柄,大多一次也只返回很少量的准备就绪句柄而已,所以,epoll_wait仅需要从内核态copy少量的句柄到用户态而已,如何能不高效?!
那么,这个准备就绪list链表是怎么维护的呢?当我们执行epoll_ctl时,除了把socket放到epoll文件系统里file对象对应的红黑树上之外,还会给内核中断处理程序注册一个回调函数,告诉内核,如果这个句柄的中断到了,就把它放到准备就绪list链表里。所以,当一个socket上有数据到了,内核在把网卡上的数据copy到内核中后就来把socket插入到准备就绪链表里了。
如此,一颗红黑树,一张准备就绪句柄链表,少量的内核cache,就帮我们解决了大并发下的socket处理问题。执行epoll_create时,创建了红黑树和就绪链表,执行epoll_ctl时,如果增加socket句柄,则检查在红黑树中是否存在,存在立即返回,不存在则添加到树干上,然后向内核注册回调函数,用于当中断事件来临时向准备就绪链表中插入数据。执行epoll_wait时立刻返回准备就绪链表里的数据即可。
最后看看epoll独有的两种模式LT和ET。无论是LT和ET模式,都适用于以上所说的流程。区别是,LT模式下,只要一个句柄上的事件一次没有处理完,会在以后调用epoll_wait时次次返回这个句柄,而ET模式仅在第一次返回。
这件事怎么做到的呢?当一个socket句柄上有事件时,内核会把该句柄插入上面所说的准备就绪list链表,这时我们调用epoll_wait,会把准备就绪的socket拷贝到用户态内存,然后清空准备就绪list链表,最后,epoll_wait干了件事,就是检查这些socket,如果不是ET模式(就是LT模式的句柄了),并且这些socket上确实有未处理的事件时,又把该句柄放回到刚刚清空的准备就绪链表了。所以,非ET的句柄,只要它上面还有事件,epoll_wait每次都会返回。而ET模式的句柄,除非有新中断到,即使socket上的事件没有处理完,也是不会次次从epoll_wait返回的。
其中涉及到的数据结构:
epoll用kmem_cache_create(slab分配器)分配内存用来存放struct epitem和struct eppoll_entry。
当向系统中添加一个fd时,就创建一个epitem结构体,这是内核管理epoll的基本数据结构:
struct epitem {
struct rb_node rbn; //用于主结构管理的红黑树
struct list_head rdllink; //事件就绪队列
struct epitem *next; //用于主结构体中的链表
struct epoll_filefd ffd; //这个结构体对应的被监听的文件描述符信息
int nwait; //poll操作中事件的个数
struct list_head pwqlist; //双向链表,保存着被监视文件的等待队列,功能类似于select/poll中的poll_table
struct eventpoll *ep; //该项属于哪个主结构体(多个epitm从属于一个eventpoll)
struct list_head fllink; //双向链表,用来链接被监视的文件描述符对应的struct file。因为file里有f_ep_link,用来保存所有监视这个文件的epoll节点
struct epoll_event event; //注册的感兴趣的事件,也就是用户空间的epoll_event
}
而每个epoll fd(epfd)对应的主要数据结构为:
struct eventpoll {
spin_lock_t lock; //对本数据结构的访问
struct mutex mtx; //防止使用时被删除
wait_queue_head_t wq; //sys_epoll_wait() 使用的等待队列
wait_queue_head_t poll_wait; //file->poll()使用的等待队列
struct list_head rdllist; //事件满足条件的链表 /*双链表中则存放着将要通过epoll_wait返回给用户的满足条件的事件*/
struct rb_root rbr; //用于管理所有fd的红黑树(树根) /*红黑树的根节点,这颗树中存储着所有添加到epoll中的需要监控的事件*/
struct epitem *ovflist; //将事件到达的fd进行链接起来发送至用户空间
}
struct eventpoll在epoll_create时创建。
这样说来,内核中维护了一棵红黑树,大致的结构如下:
当调用epoll_wait检查是否有事件发生时,只需要检查eventpoll对象中的rdlist双链表中是否有epitem元素即可。如果rdlist不为空,则把发生的事件复制到用户态,同时将事件数量返回给用户。
epoll数据结构示意图
参考:http://www.cricode.com/3499.html
陶辉 http://blog.csdn.net/russell_tao/article/details/7160071
高并发网络编程之epoll详解的更多相关文章
- 高并发网络编程之epoll详解(转载)
高并发网络编程之epoll详解(转载) 转载自:https://blog.csdn.net/shenya1314/article/details/73691088 在linux 没有实现epoll事件 ...
- 网络编程之Socket详解
在说socket之前.我们先了解下相关的网络知识: 端口 在Internet上有很多这样的主机,这些主机一般运行了多个服务软件,同时提供几种服务.每种服务都打开一个Socket,并绑定到一个端口上 ...
- Linux应用编程之lseek详解
Linux应用编程之lseek详解 1.lseek函数介绍 (1).文件指针:当我们要对一个文件进行读写时,一定要先打开这个文件,所以我们读写的所有文件都是动态文件.动态文件在内存中的形态就是文件流的 ...
- linux/unix网络编程之epoll
转载自 Linux epoll模型 ,这篇文章讲的非常详细! 定义: epoll是Linux内核为处理大批句柄而作改进的poll,是Linux下多路复用IO接口select/poll的增强版本,它能显 ...
- Linux-C网络编程之epoll函数
上文中说到假设从100的不同的地方取外卖,那么epoll相当于一部手机,当外卖到达后,送货员能够通知你.从而达到每去必得,少走非常多路. 它是怎样实现这些作用的呢? epoll的功能 epoll是se ...
- Linux系统编程(36)—— socket编程之UDP详解
UDP 是User DatagramProtocol的简称,中文名是用户数据报协议.UDP协议不面向连接,也不保证传输的可靠性,例如: 1.发送端的UDP协议层只管把应用层传来的数据封装成段交给IP协 ...
- Linux系统编程(31)—— socket编程之TCP详解
TCP有源端口号和目的端口号,通讯的双方由IP地址和端口号标识.32位序号.32位确认序号.窗口大小稍后详细解释.4位首部长度和IP协议头类似,表示TCP协议头的长度,以4字节为单位,因此TCP协议头 ...
- 网络编程之TCP/IP各层详解
网络编程之TCP/IP各层详解 我们将应用层,表示层,会话层并作应用层,从TCP/IP五层协议的角度来阐述每层的由来与功能,搞清楚了每层的主要协议,就理解了整个物联网通信的原理. 首先,用户感知到的只 ...
- linux网络编程之shutdown() 与 close()函数详解
linux网络编程之shutdown() 与 close()函数详解 参考TCPIP网络编程和UNP: shutdown函数不能关闭套接字,只能关闭输入和输出流,然后发送EOF,假设套接字为A,那么这 ...
随机推荐
- Jacoco远程统计代码覆盖率
Jacoco 什么是Jacoco? Jacoco是一个开源的Java代码覆盖率工具,Jacoco可以嵌入到Ant .Maven中,并提供了EclEmma Eclipse插件,也可以使用JavaAg ...
- C++的笔记学习第一篇,认识C++
在一个类中包含两种成员: 数据和函数,分别称为C++数据成员和成员函数. 关于类: 类是C++新增加的重要数据类型,有了类,就就可以实现面向对象程序设计方法中的封装.信息隐蔽.继承.派生.多态等功能. ...
- mysql_connect v/s mysql_pconnect
原文:mysql_connect v/s mysql_pconnect 译文:mysql_connect v/s mysql_pconnect 译者:dwqs 当需要使用PHP连接MySQL数据库的时 ...
- 如何在 Windows Azure 的虚拟机 ubuntu 上面安装和配置 openVPN(三)
第三步:安装openVPN 请打开 ubuntu 官方文档.然后,从上到下,按照步骤,输入执行命令.大家只需要执行到 First trouble shooting 之前即可. 不要怕麻烦,仔细读,一步 ...
- Kindle Paperwhite 2使用体验
博客开通后一懒就扔下了几十天,着实自惭.鉴于是第一篇,先说点题外话. 一转眼读研的生活已经过去一年有余.曾经的同学已经在职场拼搏,同龄人的生活状态也自然地带给自己一份紧迫感:不敢再贪恋校园生活的安逸, ...
- (转载)OC学习篇之---类的三大特性:封装,继承,多态
之前的一片文章介绍了OC中类的初始化方法和点语法的使用,今天来继续学习OC中的类的三大特性,我们在学习Java的时候都知道,类有三大特性:继承,封装,多态,这个也是介绍类的时候,必须提到的话题,那么今 ...
- CSS Sprite的优缺点分析
目前大多数的开发人员对这个技术都有相当地掌握,也有很多关于它的教程和文章.几乎所有的文章中都宣称设计师和开发人员都应该使用 CSS sprite 来减少 HTTP 请求数,并且节省一些流量.这个技术被 ...
- 现代C++作业2 与 围棋homework-06
本文第一部分是现代C++作业2,第二部分是对围棋程序的部分建议,还有一些修改和优化体现在Github里面的代码中. 首先是现代C++作业. 1. 了解Lambda的用法.计算“Hello World! ...
- BestCoder Round #67 (div.2) N bulbs(hdu 5600)
N bulbs Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Su ...
- 开发WebForm时遇到的问题
在做一个小项目时,一个很长的页面,页面底部有一个contact us form 整个页面我没有使用MVC,而是使用ASP.NET WebForm(.aspx)来实现,实现功能后发现,当用户在页面底部输 ...