好久没写过单组数据的题目了 QAQ

赤裸裸的模板题

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#define sqr(x) ((x) * (x)) const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846
const double INF = ;
const double eps = 1e-; int sgn(double x){
if(x > eps) return ;
else if(x < - eps) return -;
else return ;
}
struct POINT {
double x, y, ag;
POINT() {}
POINT(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const POINT &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const POINT &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
POINT operator + (const POINT &rhs) const {
return POINT(x + rhs.x, y + rhs.y);
}
POINT operator - (const POINT &rhs) const {
return POINT(x - rhs.x, y - rhs.y);
}
POINT operator * (const double &b) const {
return POINT(x * b, y * b);
}
POINT operator / (const double &b) const {
return POINT(x / b, y / b);
}
double operator * (const POINT &rhs) const {
return x * rhs.x + y * rhs.y;
}
double length() {
return sqrt(x * x + y * y);
}
double angle() {
return atan2(y, x);
}
POINT unit() {
return *this / length();
}
void makeAg() {
ag = atan2(y, x);
}
void print() {
printf("%.10f %.10f\n", x, y);
}
};
typedef POINT Vector; double dist(const POINT &a, const POINT &b) {
return (a - b).length();
} double cross(const POINT &a, const POINT &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn right
double cross(const POINT &sp, const POINT &ed, const POINT &op) {
return cross(sp - op, ed - op);
} double area(const POINT& a, const POINT &b, const POINT &c) {
return fabs(cross(a - c, b - c)) / ;
}
//counter-clockwise
POINT rotate(const POINT &p, double angle, const POINT &o = POINT(, )) {
POINT t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return POINT(x, y) + o;
} double cosIncludeAngle(const POINT &a, const POINT &b, const POINT &o) {
POINT p1 = a - o, p2 = b - o;
return (p1 * p2) / (p1.length() * p2.length());
} double includedAngle(const POINT &a, const POINT &b, const POINT &o) {
return acos(cosIncludeAngle(a, b, o));
/*
double ret = abs((a - o).angle() - (b - o).angle());
if(sgn(ret - PI) > 0) ret = 2 * PI - ret;
return ret;
*/
} struct SEG {
POINT st, ed;
double ag;
SEG() {}
SEG(POINT st, POINT ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef SEG Line; //ax + by + c > 0
Line buildLine(double a, double b, double c) {
if(sgn(a) == && sgn(b) == ) return Line(POINT(sgn(c) > ? - : , INF), POINT(, INF));
if(sgn(a) == ) return Line(POINT(sgn(b), -c/b), POINT(, -c/b));
if(sgn(b) == ) return Line(POINT(-c/a, ), POINT(-c/a, sgn(a)));
if(b < ) return Line(POINT(, -c/b), POINT(, -(a + c) / b));
else return Line(POINT(, -(a + c) / b), POINT(, -c/b));
} void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSEG(const SEG &s, const POINT &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st)) == );
} bool isInSEGRec(const SEG &s, const POINT &p) {
return sgn(min(s.st.x, s.ed.x) - p.x) <= && sgn(p.x - max(s.st.x, s.ed.x)) <=
&& sgn(min(s.st.y, s.ed.y) - p.y) <= && sgn(p.y - max(s.st.y, s.ed.y)) <= ;
} bool isIntersected(const POINT &s1, const POINT &e1, const POINT &s2, const POINT &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const SEG &a, const SEG &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const SEG &a, const SEG &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//POINT of intersection
POINT operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
POINT I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} double POINT_to_Line(const POINT &p, const Line &L) {
return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
} double POINT_to_SEG(const POINT &p, const SEG &L) {
if(sgn((L.ed - L.st) * (p - L.st)) < ) return dist(p, L.st);
if(sgn((L.st - L.ed) * (p - L.ed)) < ) return dist(p, L.ed);
return POINT_to_Line(p, L);
} double SEG_to_SEG(const SEG &a, const SEG &b) {
double ans1 = min(POINT_to_SEG(a.st, b), POINT_to_SEG(a.ed, b));
double ans2 = min(POINT_to_SEG(b.st, a), POINT_to_SEG(b.ed, a));
return min(ans1, ans2);
} struct Circle {
POINT c;
double r;
Circle() {}
Circle(POINT c, double r): c(c), r(r) {}
void read() {
c.read();
scanf("%lf", &r);
}
double area() const {
return PI * r * r;
}
bool contain(const Circle &rhs) const {
return sgn(dist(c, rhs.c) + rhs.r - r) <= ;
}
bool contain(const POINT &p) const {
return sgn(dist(c, p) - r) <= ;
}
bool intersect(const Circle &rhs) const {
return sgn(dist(c, rhs.c) - r - rhs.r) < ;
}
bool tangency(const Circle &rhs) const {
return sgn(dist(c, rhs.c) - r - rhs.r) == ;
}
POINT pos(double angle) const {
POINT p = POINT(c.x + r, c.y);
return rotate(p, angle, c);
}
}; double CommonArea(const Circle &A, const Circle &B) {
double area = 0.0;
const Circle & M = (A.r > B.r) ? A : B;
const Circle & N = (A.r > B.r) ? B : A;
double D = dist(M.c, N.c);
if((D < M.r + N.r) && (D > M.r - N.r)) {
double cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D);
double cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D);
double alpha = * acos(cosM);
double beta = * acos(cosN);
double TM = 0.5 * M.r * M.r * (alpha - sin(alpha));
double TN = 0.5 * N.r * N.r * (beta - sin(beta));
area = TM + TN;
}
else if(D <= M.r - N.r) {
area = N.area();
}
return area;
} int intersection(const SEG &s, const Circle &cir, POINT &p1, POINT &p2) {
double angle = cosIncludeAngle(s.ed, cir.c, s.st);
//double angle1 = cos(includedAngle(s.ed, cir.c, s.st));
double B = dist(cir.c, s.st);
double a = , b = - * B * angle, c = sqr(B) - sqr(cir.r);
double delta = sqr(b) - * a * c;
if(sgn(delta) < ) return ;
if(sgn(delta) == ) delta = ;
double x1 = (-b - sqrt(delta)) / ( * a), x2 = (-b + sqrt(delta)) / ( * a);
Vector v = (s.ed - s.st).unit();
p1 = s.st + v * x1;
p2 = s.st + v * x2;
return + sgn(delta);
} double CommonArea(const Circle &cir, POINT p1, POINT p2) {
if(p1 == cir.c || p2 == cir.c) return ;
if(cir.contain(p1) && cir.contain(p2)) {
return area(cir.c, p1, p2);
} else if(!cir.contain(p1) && !cir.contain(p2)) {
POINT q1, q2;
int t = intersection(Line(p1, p2), cir, q1, q2);
if(t == ) {
double angle = includedAngle(p1, p2, cir.c);
return 0.5 * sqr(cir.r) * angle;
} else {
double angle1 = includedAngle(p1, p2, cir.c);
double angle2 = includedAngle(q1, q2, cir.c);
if(isInSEGRec(SEG(p1, p2), q1))return 0.5 * sqr(cir.r) * (angle1 - angle2 + sin(angle2));
else return 0.5 * sqr(cir.r) * angle1;
}
} else {
if(cir.contain(p2)) swap(p1, p2);
POINT q1, q2;
intersection(Line(p1, p2), cir, q1, q2);
double angle = includedAngle(q2, p2, cir.c);
double a = area(cir.c, p1, q2);
double b = 0.5 * sqr(cir.r) * angle;
return a + b;
}
} struct Triangle {
POINT p[];
Triangle() {}
Triangle(POINT *t) {
for(int i = ; i < ; ++i) p[i] = t[i];
}
void read() {
for(int i = ; i < ; ++i) p[i].read();
}
double area() const {
return ::area(p[], p[], p[]);
}
POINT& operator[] (int i) {
return p[i];
}
}; double CommonArea(Triangle tir, const Circle &cir) {
double ret = ;
ret += sgn(cross(tir[], cir.c, tir[])) * CommonArea(cir, tir[], tir[]);
ret += sgn(cross(tir[], cir.c, tir[])) * CommonArea(cir, tir[], tir[]);
ret += sgn(cross(tir[], cir.c, tir[])) * CommonArea(cir, tir[], tir[]);
return abs(ret);
} struct POLY {
int n;
POINT p[MAXN];//p[n] = p[0]
void init(POINT *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
};
//the convex hull is clockwise
void Graham_scan(POINT *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, POLY &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} //ix and jx is the POINTs whose distance is return, res.p[n - 1] = res.p[0], res must be clockwise
double dia_rotating_calipers(POLY &res, int &ix, int &jx) {
double dia = ;
int q = ;
for(int i = ; i < res.n - ; ++i) {
while(sgn(cross(res.p[i], res.p[q + ], res.p[i + ]) - cross(res.p[i], res.p[q], res.p[i + ])) > )
q = (q + ) % (res.n - );
if(sgn(dist(res.p[i], res.p[q]) - dia) > ) {
dia = dist(res.p[i], res.p[q]);
ix = i; jx = q;
}
if(sgn(dist(res.p[i + ], res.p[q]) - dia) > ) {
dia = dist(res.p[i + ], res.p[q]);
ix = i + ; jx = q;
}
}
return dia;
}
//a and b must be clockwise, find the minimum distance between two convex hull
double half_rotating_calipers(POLY &a, POLY &b) {
int sa = , sb = ;
for(int i = ; i < a.n; ++i) if(sgn(a.p[i].y - a.p[sa].y) < ) sa = i;
for(int i = ; i < b.n; ++i) if(sgn(b.p[i].y - b.p[sb].y) < ) sb = i;
double tmp, ans = dist(a.p[], b.p[]);
for(int i = ; i < a.n; ++i) {
while(sgn(tmp = cross(a.p[sa], a.p[sa + ], b.p[sb + ]) - cross(a.p[sa], a.p[sa + ], b.p[sb])) > )
sb = (sb + ) % (b.n - );
if(sgn(tmp) < ) ans = min(ans, POINT_to_SEG(b.p[sb], SEG(a.p[sa], a.p[sa + ])));
else ans = min(ans, SEG_to_SEG(SEG(a.p[sa], a.p[sa + ]), SEG(b.p[sb], b.p[sb + ])));
sa = (sa + ) % (a.n - );
}
return ans;
} double rotating_calipers(POLY &a, POLY &b) {
return min(half_rotating_calipers(a, b), half_rotating_calipers(b, a));
} /*******************************************************************************************/ POINT p[MAXN];
Circle cir1, cir2, cir3; int main(){
double x1, y1, R, r, x2, y2, k;
scanf("%lf%lf%lf%lf%lf%lf%lf",&x1,&y1,&R,&r,&x2,&y2,&k);
cir1 = Circle(POINT(x1, y1), R);
cir2 = Circle(POINT(x1, y1), r);
cir3 = Circle(POINT(x2, y2), k);
printf("%.2f\n",CommonArea(cir3, cir1) - CommonArea(cir3, cir2));
}

BNU 4067 求圆并的更多相关文章

  1. CF 337D 求圆交

    题目链接:http://codeforces.com/problemset/problem/337/D 题意:就是一棵树上,有一些点被来自东方的神秘力量影响的,力量影响范围是d,为可能的力量源有几个. ...

  2. JAVA求圆的面积

    import java.text.DecimalFormat;import java.util.Scanner; public class TheAreaOfCircle { public stati ...

  3. 已知圆上三个点坐标,求圆半径 r 和 圆心坐标

    问题: 已知圆上三个点坐标分别为(x1,y1).(x2,y2).(x3,y3) 求圆半径R和圆心坐标(X,Y) X,Y,R为未知数,x1,y1,x2,y2,x3,y3为常数 则由圆公式:(x1-X)² ...

  4. python脚本1_给一个半径求圆的面积和周长

    #给一个半径,求圆的面积和周长,圆周率3.14 r = int(input('r=')) print('area='+str(3.14*r*r)) print('circumference='+str ...

  5. YTU 2723: 默认参数--求圆的面积

    2723: 默认参数--求圆的面积 时间限制: 1 Sec  内存限制: 128 MB 提交: 206  解决: 150 题目描述 根据半径r求圆的面积, 如果不指定小数位数,输出结果默认保留两位小数 ...

  6. bnu 4067 美丽的花环

    http://www.bnuoj.com/bnuoj/problem_show.php?pid=4067 美丽的花环 Time Limit: 1000ms Case Time Limit: 1000m ...

  7. hdu 5120(2014北京—求圆相交)

    题意:求环的相交面积 思路: 通过画图可知,面积= 大圆相交面积 - 大小圆相交面积*2 + 小小圆相交面积  再通过圆相交模板计算即可 #include <iostream> #incl ...

  8. 牛客网暑期ACM多校训练营(第三场) J Distance to Work 计算几何求圆与多边形相交面积模板

    链接:https://www.nowcoder.com/acm/contest/141/J来源:牛客网 Eddy has graduated from college. Currently, he i ...

  9. [hihoCoder1231 2015BeijingOnline]求圆与多边形公共部分的周长

    题意:如题 思路:离散.将所有交点求出来,相当于将多变形的边切成了很多条元边,对每条元边,有两种情况 在圆内,答案加上此边长 在圆外,答案加上此边相对于圆心的"有向转弧" #inc ...

随机推荐

  1. hihocoder #1260 : String Problem I

    题目链接   时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 我们有一个字符串集合S,其中有N个两两不同的字符串. 还有M个询问,每个询问给出一个字符串w,求有多少S中的 ...

  2. Laravel + Xdebug 时需要注意的问题

    [平台环境]64bit Win7 + Wamp2.5 (php 5.5, Apache 2.4.9) [Xdebug版本]php_xdebug-2.2.5-5.5-vc11-x86_64.dll 配置 ...

  3. [置顶] Asp.Net底层原理(一、浏览器和服务器的交互原理)

    …… 一.浏览器和服务器的交互原理 二.写自己的"迷你"Asp.net框架 三.Asp.Net的请求与响应过程 1.在此之前,首先简单的模拟一下我们去请求一个网址的时候,浏览器和服 ...

  4. 信号量多-threaded同步Semaphore

    Semaphore它是JDK1.5一个实现后,外面有个办法同步.Semaphore能够保持其当前的线程接入号码.并提供了一个同步机制. 采用Semaphore时,可以用相同的对资源的访问进行控制的线程 ...

  5. golang(2):beego 环境搭建

    本文的原文连接是: http://blog.csdn.net/freewebsys/article/details/46695513 转载请一定注明出处. 1,关于beego beego是一个用Go开 ...

  6. (译)Node.js的全局变量

    原文标题:Global Variables in Node.js 原文链接:http://www.hacksparrow.com/global-variables-in-node-js.html 你可 ...

  7. 如何使用SublimeText风格的代码高亮样式 添加Zed Coding(EMMET)插件

    因为觉得博客园自带的代码高亮样式很单一,不符合作为前端的我的审美习惯,于是下定决心要想办法折腾出一个方法来应用上另外一套代码高亮样式. 虽然探索的过程是很痛苦的,但最后还是成功了,但也不枉付出的那些努 ...

  8. json在PHP中应用技巧

    一.json_encode() 该函数主要用来将数组和对象,转换为json格式.先看一个数组转换的例子: $arr = array ('a'=>1,'b'=>2,'c'=>3,'d' ...

  9. 使用python操作RabbitMQ,Redis,Memcache,SQLAlchemy 其一

    一.概念 1.Memcached     Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态 ...

  10. vagrant 入门3

    创建第一个Vagrant虚拟环境以及工程(续集): (8) Provisioning: 通常情况下Box只做最基本的设置,而不是一次到位的设置好所有的环境.Vagrant通常使用chef或者Puppe ...