VC维
vc理论(Vapnik–Chervonenkis theory )是由 Vladimir Vapnik 和 Alexey Chervonenkis发明的。该理论试图从统计学的角度解释学习的过程。而VC维是VC理论中一个很重要的部分。
定义:对一个指示函数集,如果存在h个样本能够被函数集中的函数按所有可能的 种形式分开,则称函数集能够把h个样本打散;函数集的VC维就是它能打散的最大样本数目h.若对任意数目的样本都有函数能将它们打散,则函数集的VC维是无穷大. VC维反映了函数集的学习能力,VC维越大则学习机器越复杂(容量越大).学习能力越强
模式识别中VC维的直观定义是:对一个指示函数集,如果存在h个样本能够被函数集中的函数按所有可能的2h(是2h吗?)种形式分开,则称函数集能够把h个样本打散,函数集的VC维就是它能打散的最大样本数目h,若对任意数目的样本都有函数能将它们打散.则函数集的VC维是无穷大。有界实函数的VC维可以通过用一定的阈值将它转化成指示函数来定义。VC维反映了函数集的学习能力,VC维越大则学习机器越复杂,所以VC维又是学习机器复杂程度的一种衡量。
换一个角度来理解,如果用函数类{f(z,a)}代表一个学习机,a 确定后就确定了一个判别函数了EF,而VC维为该学习机能学习的可以由其分类函数正确给出的所有可能二值标识的最大训练样本数。故有这样的结论,平面内只能找到3个点能被直线打散而不找到第4点。
对于这个结论我是如下理解的:
(1)平面内只能找到3个点能被直线打散:直线只能把一堆点分成两堆,对于3个点,要分成两堆加上顺序就有23种。其中A、B、C表示3个点,+1,-1表示堆的类别, {A→-1,BC→+1}表示A分在标号为-1的那堆,B和C分在标号为+1的那堆。这就是一种分发。以此类推。则有如下8种分法:
{A→-1,BC→+1},{A→+1,BC→-1}
{B→-1,AC→+1},{B→+1,BC→-1}
{C→-1,AB→+1},{C→+1,BC→-1}
{ABC→-1},{ABC→+1}
(2)找不到4个点。假设有,则应该有24=16分法,但是把四个点分成两堆有:一堆一个点另一对三个点(1,3);两两均分(2,2);一堆四个另一堆没有(0,4)三种情况。对于第一种情况,4个点可分别做一次一个一堆的,加上顺序就有8种:
{A→-1,BCD→+1},{A→+1,BCD→-1}
{B→-1,ACD→+1},{B→+1,ACD→-1}
{C→-1,ABD→+1},{C→+1,ABD→-1}
{D→-1,ABC→+1},{D→+1,ABC→-1};
对于第二种情况有4种:
{AB→-1,CD→+1},{AB→+1,CD→-1}
{AC→-1,BD→+1},{AC→+1,BD→-1}
没有一条直线能使AD在一堆,BC在一堆,因为A、D处在对角线位置,B、C处在对角线位置。(这是我直观在图上找出来的)
对于第三种情况有2种;
{ABCD→-1}
{ABCD→+1}
所以总共加起来只有8+4+2=14种分法,不满足24=16分法,所以平面找不到4个点能被直线打散。
VC维的更多相关文章
- 《机器学习基石》---VC维
1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个 ...
- 机器学习基石7-The VC Dimension
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释.机器能够学习必须满 ...
- 机器学习基石:07 The VC Dimension
当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...
- 机器学习基石笔记:07 The VC Dimension
当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...
- 【转载】VC维的来龙去脉
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...
- 机器学习基石12-Nonlinear Transformation
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课介绍了分类问题的三种线性模型,可以用来解决binary classif ...
- 机器学习基石9-Linear Regression
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上节课,主要介绍了在有noise的情况下,VC Bound理论仍然是成立的.同 ...
- VC维的来龙去脉——转载
VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffd ...
- VC维的来龙去脉(转)
本文转自VC维的来龙去脉 本文为直接复制原文内容,建议阅读原文,原文排版更清晰,且原网站有很多有意思的文章. 阅读总结: 文章几乎为台大林老师网课“机器学习可行性”部分串联总结,是一个很好的总结. H ...
- VC维与DNN的Boundary
原文链接:解读机器学习基础概念:VC维来去 作者:vincentyao 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effecti ...
随机推荐
- Stack的三种含义(数据超过栈的大小,就发生stack overflow)
非常典型的基础知识,转自http://www.ruanyifeng.com/blog/2013/11/stack.html 学习编程的时候,经常会看到stack这个词,它的中文名字叫做"栈& ...
- logstash multiline
filter { multiline { pattern => "^\s+%{TIMESTAMP_ISO8601}" negate=>true what=>&qu ...
- 【HDOJ】1011 Starship Troopers
第一道树形DP.很容易理解. #include <cstdio> #include <cstring> #include <cstdlib> #define MAX ...
- css属性之appearance
appearance 属性允许您使元素看上去像标准的用户界面元素. 案例: 使 div 元素看上去像一个按钮 <!DOCTYPE html> <html> <head&g ...
- 多个ajax按照顺序执行的方法
$.ajax({ dataType: "json", async: false, //只需将此属性设置为false url: ~~, type: "GET", ...
- HDU3727--Jewel (主席树 静态区间第k大)
Jewel Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- 设置mysql数据库的密码
mysql>set password=password("......");
- Java实现生命周期管理机制
先扯再说 最近一直在研究某个国产开源的MySQL数据库中间件,拉下其最新版的代码到eclipse后,启动起来,然后做各种测试和代码追踪:用完想要关闭它时,拉出它的STOP类想要运行时,发现这个类里赫然 ...
- Scala-数组
package com.mengyao.scala.function /** * Scala中数组的声明和使用(定长数组和变长数组) * * @author mengyao */object Tes ...
- asp.net 分页类
PaginatedList.cs using System;using System.Collections.Generic;using System.Linq;using System.Web; n ...