vc理论(Vapnik–Chervonenkis theory )是由 Vladimir Vapnik 和 Alexey Chervonenkis发明的。该理论试图从统计学的角度解释学习的过程。而VC维是VC理论中一个很重要的部分。

  定义:对一个指示函数集,如果存在h个样本能够被函数集中的函数按所有可能的 种形式分开,则称函数集能够把h个样本打散;函数集的VC维就是它能打散的最大样本数目h.若对任意数目的样本都有函数能将它们打散,则函数集的VC维是无穷大. VC维反映了函数集的学习能力,VC维越大则学习机器越复杂(容量越大).学习能力越强  

  模式识别中VC维的直观定义是:对一个指示函数集,如果存在h个样本能够被函数集中的函数按所有可能的2h(是2h吗?)种形式分开,则称函数集能够把h个样本打散,函数集的VC维就是它能打散的最大样本数目h,若对任意数目的样本都有函数能将它们打散.则函数集的VC维是无穷大。有界实函数的VC维可以通过用一定的阈值将它转化成指示函数来定义。VC维反映了函数集的学习能力,VC维越大则学习机器越复杂,所以VC维又是学习机器复杂程度的一种衡量。

换一个角度来理解,如果用函数类{f(z,a)}代表一个学习机,a 确定后就确定了一个判别函数了EF,而VC维为该学习机能学习的可以由其分类函数正确给出的所有可能二值标识的最大训练样本数。故有这样的结论,平面内只能找到3个点能被直线打散而不找到第4点

对于这个结论我是如下理解的:

(1)平面内只能找到3个点能被直线打散:直线只能把一堆点分成两堆,对于3个点,要分成两堆加上顺序就有23种。其中A、B、C表示3个点,+1,-1表示堆的类别, {A→-1,BC→+1}表示A分在标号为-1的那堆,B和C分在标号为+1的那堆。这就是一种分发。以此类推。则有如下8种分法:

{A→-1,BC→+1},{A→+1,BC→-1}

{B→-1,AC→+1},{B→+1,BC→-1}

{C→-1,AB→+1},{C→+1,BC→-1}

{ABC→-1},{ABC→+1}

(2)找不到4个点。假设有,则应该有24=16分法,但是把四个点分成两堆有:一堆一个点另一对三个点(1,3);两两均分(2,2);一堆四个另一堆没有(0,4)三种情况。对于第一种情况,4个点可分别做一次一个一堆的,加上顺序就有8种:

{A→-1,BCD→+1},{A→+1,BCD→-1}

{B→-1,ACD→+1},{B→+1,ACD→-1}

{C→-1,ABD→+1},{C→+1,ABD→-1}

{D→-1,ABC→+1},{D→+1,ABC→-1};

对于第二种情况有4种:

{AB→-1,CD→+1},{AB→+1,CD→-1}

{AC→-1,BD→+1},{AC→+1,BD→-1}

没有一条直线能使AD在一堆,BC在一堆,因为A、D处在对角线位置,B、C处在对角线位置。(这是我直观在图上找出来的)

对于第三种情况有2种;

{ABCD→-1}

{ABCD→+1}

所以总共加起来只有8+4+2=14种分法,不满足24=16分法,所以平面找不到4个点能被直线打散。 

VC维的更多相关文章

  1. 《机器学习基石》---VC维

    1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个 ...

  2. 机器学习基石7-The VC Dimension

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释.机器能够学习必须满 ...

  3. 机器学习基石:07 The VC Dimension

    当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...

  4. 机器学习基石笔记:07 The VC Dimension

    当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...

  5. 【转载】VC维的来龙去脉

    本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...

  6. 机器学习基石12-Nonlinear Transformation

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课介绍了分类问题的三种线性模型,可以用来解决binary classif ...

  7. 机器学习基石9-Linear Regression

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上节课,主要介绍了在有noise的情况下,VC Bound理论仍然是成立的.同 ...

  8. VC维的来龙去脉——转载

    VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffd ...

  9. VC维的来龙去脉(转)

    本文转自VC维的来龙去脉 本文为直接复制原文内容,建议阅读原文,原文排版更清晰,且原网站有很多有意思的文章. 阅读总结: 文章几乎为台大林老师网课“机器学习可行性”部分串联总结,是一个很好的总结. H ...

  10. VC维与DNN的Boundary

    原文链接:解读机器学习基础概念:VC维来去 作者:vincentyao 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effecti ...

随机推荐

  1. makefile高级用法--使用函数

    makefile高级用法--使用函数 分类: C/C++ 使用函数 ———— 在Makefile中可以使用函数来处理变量,从而让我们的命令或是规则更为的灵活和具有智能.make所支持的函数也不算很多, ...

  2. NOI2010 航空管制

    http://www.lydsy.com/JudgeOnline/problem.php?id=2535 贪心. 对于第1个问,我们先建立拓扑图,对于如果a必须在b前起飞,那么连有向边b->a, ...

  3. codeforces 277.5 div2 F:组合计数类dp

    题目大意: 求一个 n*n的 (0,1)矩阵,每行每列都只有两个1 的方案数 且该矩阵的前m行已知 分析: 这个题跟牡丹江区域赛的D题有些类似,都是有关矩阵的行列的覆盖问题 牡丹江D是求概率,这个题是 ...

  4. sicily 4378 connected components in undirected graph

    题意:求图中的连通块数,注意孤立的算自连通! 例如:6个顶点3条路径,其中路径为:1->2    4->5  1->3 那么有(1-2&&1->3) + (4- ...

  5. javaweb笔记之get和post的不同

    1 GET方式 1)提交的参数数据会放在请求信息的URL后面.以?开头,多个参数数据以 & 分 割. 2)浏览器的地址会发生改变 3)参数数据的容量不能超过1KB. 4)不适合敏感数据的提交 ...

  6. (转)Android签名详解(debug和release)

    1. 为什么要签名 1) 发送者的身份认证 由于开发商可能通过使用相同的Package Name来混淆替换已经安装的程序,以此保证签名不同的包不被替换 2) 保证信息传输的完整性 签名对于包中的每个文 ...

  7. iOS 时区问题总结 NSTimeZone

    基本概念 GMT 0:00 格林威治标准时间; UTC +00:00 校准的全球时间; CCD +08:00 中国标准时间 [来自百度百科] 夏时制,英文"DaylightSavingTim ...

  8. AngularJs学习笔记6——四大特性之依赖注入

    压缩工具:YUI-compressor 为了优化网页功能,对一些脚本文件进行压缩,比如:删除所有的注释和空格等,简化形参.但是AngularJs模块中可以声明多种组件,如控制器.指令.过滤器.服务等. ...

  9. Android 监听wifi广播的两种方式

    1.XML中声明 <receiver android:name=".NetworkConnectChangedReceiver" >             <i ...

  10. Cocos2D-x权威指南: CCNode类方法:

    5.1.4 画图节点CCNode和图层CCLayer CCNode中提供的方法,在public块中的方法主要有下面几个部分: 1.针对节点显示的属性信息读写 2.针对节点变换的属性信息读写 3.针对子 ...