VC维
vc理论(Vapnik–Chervonenkis theory )是由 Vladimir Vapnik 和 Alexey Chervonenkis发明的。该理论试图从统计学的角度解释学习的过程。而VC维是VC理论中一个很重要的部分。
定义:对一个指示函数集,如果存在h个样本能够被函数集中的函数按所有可能的 种形式分开,则称函数集能够把h个样本打散;函数集的VC维就是它能打散的最大样本数目h.若对任意数目的样本都有函数能将它们打散,则函数集的VC维是无穷大. VC维反映了函数集的学习能力,VC维越大则学习机器越复杂(容量越大).学习能力越强
模式识别中VC维的直观定义是:对一个指示函数集,如果存在h个样本能够被函数集中的函数按所有可能的2h(是2h吗?)种形式分开,则称函数集能够把h个样本打散,函数集的VC维就是它能打散的最大样本数目h,若对任意数目的样本都有函数能将它们打散.则函数集的VC维是无穷大。有界实函数的VC维可以通过用一定的阈值将它转化成指示函数来定义。VC维反映了函数集的学习能力,VC维越大则学习机器越复杂,所以VC维又是学习机器复杂程度的一种衡量。
换一个角度来理解,如果用函数类{f(z,a)}代表一个学习机,a 确定后就确定了一个判别函数了EF,而VC维为该学习机能学习的可以由其分类函数正确给出的所有可能二值标识的最大训练样本数。故有这样的结论,平面内只能找到3个点能被直线打散而不找到第4点。
对于这个结论我是如下理解的:
(1)平面内只能找到3个点能被直线打散:直线只能把一堆点分成两堆,对于3个点,要分成两堆加上顺序就有23种。其中A、B、C表示3个点,+1,-1表示堆的类别, {A→-1,BC→+1}表示A分在标号为-1的那堆,B和C分在标号为+1的那堆。这就是一种分发。以此类推。则有如下8种分法:
{A→-1,BC→+1},{A→+1,BC→-1}
{B→-1,AC→+1},{B→+1,BC→-1}
{C→-1,AB→+1},{C→+1,BC→-1}
{ABC→-1},{ABC→+1}
(2)找不到4个点。假设有,则应该有24=16分法,但是把四个点分成两堆有:一堆一个点另一对三个点(1,3);两两均分(2,2);一堆四个另一堆没有(0,4)三种情况。对于第一种情况,4个点可分别做一次一个一堆的,加上顺序就有8种:
{A→-1,BCD→+1},{A→+1,BCD→-1}
{B→-1,ACD→+1},{B→+1,ACD→-1}
{C→-1,ABD→+1},{C→+1,ABD→-1}
{D→-1,ABC→+1},{D→+1,ABC→-1};
对于第二种情况有4种:
{AB→-1,CD→+1},{AB→+1,CD→-1}
{AC→-1,BD→+1},{AC→+1,BD→-1}
没有一条直线能使AD在一堆,BC在一堆,因为A、D处在对角线位置,B、C处在对角线位置。(这是我直观在图上找出来的)
对于第三种情况有2种;
{ABCD→-1}
{ABCD→+1}
所以总共加起来只有8+4+2=14种分法,不满足24=16分法,所以平面找不到4个点能被直线打散。
VC维的更多相关文章
- 《机器学习基石》---VC维
1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个 ...
- 机器学习基石7-The VC Dimension
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释.机器能够学习必须满 ...
- 机器学习基石:07 The VC Dimension
当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...
- 机器学习基石笔记:07 The VC Dimension
当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...
- 【转载】VC维的来龙去脉
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...
- 机器学习基石12-Nonlinear Transformation
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课介绍了分类问题的三种线性模型,可以用来解决binary classif ...
- 机器学习基石9-Linear Regression
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上节课,主要介绍了在有noise的情况下,VC Bound理论仍然是成立的.同 ...
- VC维的来龙去脉——转载
VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffd ...
- VC维的来龙去脉(转)
本文转自VC维的来龙去脉 本文为直接复制原文内容,建议阅读原文,原文排版更清晰,且原网站有很多有意思的文章. 阅读总结: 文章几乎为台大林老师网课“机器学习可行性”部分串联总结,是一个很好的总结. H ...
- VC维与DNN的Boundary
原文链接:解读机器学习基础概念:VC维来去 作者:vincentyao 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effecti ...
随机推荐
- 二叉树后序遍历的非递归算法(C语言)
首先非常感谢‘hicjiajia’的博文:二叉树后序遍历(非递归) 这篇随笔开启我的博客进程,成为万千程序员中的一员,坚持走到更远! 折磨了我一下午的后序遍历中午得到解决,关键在于标记右子树是否被访问 ...
- hdu5136:组合计数、dp
题目大意: 求直径长度为N的无根二叉树的个数(同构的只算一种) 分析: 分析发现直径长度不好处理!因此考虑把问题转化一下: 假设要求直径为N的二叉树 (1) 若N为偶数,将树从直径中点的边断开,则分成 ...
- [置顶] 【Git入门之十一】标签管理
原创作品,转载请标明:http://blog.csdn.net/jackystudio/article/details/12309731 标签是啥?标签就是给某个版本的一个标记. 1.为当前版本创建标 ...
- 【KMP】剪花布条
KMP算法 又水了一题.算是巩固复习吧. Problem Description 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽 ...
- 状态模式(State) 笔记
让一个对象随着内部的状态改变而发生改变. 状态的两种切换方式: 1) 完全交给Context类切换, 2) 给Context初始化状态,其他的切换根据每一个State类进行切换,Context对象不再 ...
- MySQL获取系统性能和状态
#!/bin/ksh INTERVAL=5 PREFIX=$INTERVAL-sec-status touch /tmp/running RUNFILE=/tmp/running my -e 'sho ...
- JAVA基础1
阶段0:拟出一个计划 阶段1:要制作什么? 阶段2:如何构建? 阶段3:开始创建 阶段4:校订 阶段5:计划的回报 一.程序运行时,数据保存位置 1.寄存器.这是最快的保存区域,因为它位于和其他所 ...
- codeforces Arrival of the General 题解
A Ministry for Defense sent a general to inspect the Super Secret Military Squad under the command o ...
- [ES6] Array -- Destructuring and Rest Parameters && for ..of && Arrat.find()
We can use the destructing and rest parameters at the same time when dealing with Array opration. Ex ...
- JNI(5)The Invocation API
调用API允许软件提供商加载Java VM 到任意的本地应用中.供应商可以提供支持Java的应用程序而无需链接Java VM的代码. 概述 下面代码展示了通过调用API如何使用函数.这个例子中C++代 ...