http://poj.org/problem?id=3525

给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个

思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
const double finf=1e10;
const double eps=1e-;
const double Pi=acos(-);
int n,tot;
struct Point{
double x,y;
Point(){}
Point(double x0,double y0):x(x0),y(y0){}
}p[];
struct Line{
Point s,e;
double slop;
Line(){}
Line(Point s0,Point e0):s(s0),e(e0){}
}l[],L[],c[];
int read(){
int t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-')f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
Point operator *(Point p,double x){
return Point(p.x*x,p.y*x);
}
Point operator /(Point p,double x){
return Point(p.x/x,p.y/x);
}
double operator *(Point p1,Point p2){
return p1.x*p2.y-p1.y*p2.x;
}
Point operator -(Point p1,Point p2){
return Point(p1.x-p2.x,p1.y-p2.y);
}
Point operator +(Point p1,Point p2){
return Point(p1.x+p2.x,p1.y+p2.y);
}
double sqr(double x){
return x*x;
}
double dis(Point p){
return sqrt(sqr(p.x)+sqr(p.y));
}
Point e(Point p){
double len=dis(p);
p=p/len;
return p;
}
Point turn(Point p,double x){
double Sin=sin(x),Cos=cos(x);
double X=Cos*p.x-Sin*p.y;
double Y=Cos*p.y+Sin*p.x;
return Point(X,Y);
}
bool cmp(Line p1,Line p2){
if (p1.slop!=p2.slop) return p1.slop<p2.slop;
else return (p1.e-p1.s)*(p2.e-p1.s)<=;
}
void build(double mid){
for (int i=;i<=tot;i++){
Point p=e(turn(l[i].e-l[i].s,Pi/2.0))*mid;
L[i].s=l[i].s+p;
L[i].e=l[i].e+p;
}
for (int i=;i<=tot;i++)
L[i].slop=l[i].slop;
std::sort(L+,L++tot,cmp);
}
Point inter(Line p1,Line p2){
double k1=(p2.e-p1.s)*(p1.e-p1.s);
double k2=(p1.e-p1.s)*(p2.s-p1.s);
double t=(k2/(k1+k2));
double x=p2.s.x+(p2.e.x-p2.s.x)*t;
double y=p2.s.y+(p2.e.y-p2.s.y)*t;
return Point(x,y);
}
bool jud(Line p1,Line p2,Line p3){
Point p=inter(p1,p2);
return (p-p3.s)*(p3.e-p3.s)>;
}
bool phi(){
int cnt=;
for (int i=;i<=tot;i++)
if (L[i].slop!=L[i-].slop) L[++cnt]=L[i];
int lll=,rrr=;c[lll]=L[];c[rrr]=L[];
for (int i=;i<=cnt;i++){
while (lll<rrr&&jud(c[rrr],c[rrr-],L[i])) rrr--;
while (lll<rrr&&jud(c[lll],c[lll+],L[i])) lll++;
c[++rrr]=L[i];
}
while (lll<rrr&&jud(c[rrr],c[rrr-],c[lll])) rrr--;
while (lll<rrr&&jud(c[lll],c[lll+],c[rrr])) lll++;
if (rrr-lll+>=) return ;
else return ;
}
bool check(double mid){
build(mid);
if (phi()) return ;
return ;
}
int main(){
while (scanf("%d",&n)!=EOF){
if (n==) return ;
for (int i=;i<=n;i++)
p[i].x=read(),p[i].y=read();
p[n+]=p[];
tot=;
for (int i=;i<=n;i++)
l[++tot]=Line(p[i],p[i+]);
for (int i=;i<=tot;i++) l[i].slop=atan2(l[i].e.y-l[i].s.y,l[i].e.x-l[i].s.x);
double ll=0.0,rr=finf;
while (rr-ll>eps){
double mid=(ll+rr)/2.0;
if (check(mid)) ll=mid;
else rr=mid;
}
printf("%.6f\n",ll);
}
}

POJ 3525 Most Distant Point from the Sea的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  2. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  3. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  4. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  5. POJ 3525 Most Distant Point from the Sea 二分+半平面交

    题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...

  6. 【POJ】【3525】Most Distant Point from the Sea

    二分+计算几何/半平面交 半平面交的学习戳这里:http://blog.csdn.net/accry/article/details/6070621 然而这题是要二分长度r……用每条直线的距离为r的平 ...

  7. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  8. poj 3525 凸多边形多大内切圆

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4758   ...

  9. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

随机推荐

  1. Linux中.a,.la,.o,.so文件的意义和编程实现

    Linux中.a,.la,.o,.so文件的意义和编程实现    Linux下文件的类型是不依赖于其后缀名的,但一般来讲:        .o,是目标文件,相当于windows中的.obj文件     ...

  2. HDOJ 1279 验证角谷猜想

    Problem Description 数论中有许多猜想尚未解决,其中有一个被称为"角谷猜想"的问题,该问题在五.六十年代的美国多个著名高校中曾风行一时,这个问题是这样描述的:任何 ...

  3. HDU 5505 - BestCoder Round #60 - GT and numbers

    题目链接 : http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=641&pid=1002 思路 : N有若 ...

  4. Python读取txt文件

    Python读取txt文件,有两种方式: (1)逐行读取 data=open("data.txt") line=data.readline() while line: print ...

  5. JS-事件处理

    1.一个简单的单击事件: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> ...

  6. socket实例1

    第一个例子创建了一个java工程,用来测试Socket的连接功能,通过浏览器可访问,地址为:127.0.0.1:端口号 MyServerSocket.java, package com.jikexue ...

  7. Eclipse中设置编码的方式

    如果要使插件开发应用能有更好的国际化支持,能够最大程度的支持中文输出,则最好使 Java文件使用UTF-8编码.然而,Eclipse工 作空间(workspace)的缺省字符编码是操作系统缺省的编码, ...

  8. 线段树求逆序数方法 HDU1394&amp;&amp;POJ2299

    为什么线段树能够求逆序数? 给一个简单的序列 9 5 3 他的逆序数是3 首先要求一个逆序数有两种方式:能够从头開始往后找比当前元素小的值,也能够从后往前找比当前元素大的值,有几个逆序数就是几. 线段 ...

  9. 自定义ImageView实现图片手势滑动,多点触摸放大缩小效果

    首先呢,还是一贯作风,我们先来看看众多应用中的示例:(这种效果是很常见的,可以说应用的必须品.)                搜狐客户端                               ...

  10. win32线程池代码(WinApi/C++)

    win32线程池代码(WinApi/C++) 健壮, 高效,易用,易于扩, 可用于任何C++编译器 //说明, 这段代码我用了很久, 我删除了自动调整规模的代码(因为他还不成熟)/********** ...