hdu 3853 LOOPS(概率 dp 期望)
Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.
The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+, c)), the grid on the right of G (grid(r, c+)), or even G itself at respective probability (How evil the Boss Incubator is)!
At the beginning Homura is in the top left corner of the LOOPS ((, )), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power she need to escape from the LOOPS.
The first line contains two integers R and C ( <= R, C <= ). The following R lines, each contains C* real numbers, at decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+), grid (r+, c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by spaces. It is ensured that the sum of three numbers in each group is , and the second numbers of the rightmost groups are (as there are no grids on the right of them) while the third numbers of the downmost groups are (as there are no grids below them). You may ignore the last three numbers of the input data. They are printed just for looking neat. The answer is ensured no greater than . Terminal at EOF
A real number at decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS.
0.00 0.50 0.50 0.50 0.00 0.50
0.50 0.50 0.00 1.00 0.00 0.00
6.000
题意:有一个迷宫r行m列,开始点在[1,1]现在要走到[r,c] ,对于在点[x,y]可以打开一扇门走到[x+1,y]或者[x,y+1] ,消耗2点魔力 ,问平均消耗多少魔力能走到[r,c]
- 分析:假设dp[i][j]表示在点[i,j]到达[r,c]所需要消耗的平均魔力(期望)
- 则从dp[i][j]可以到达:
- dp[i][j],dp[i+1,j],dp[i][j+1];
- 对应概率分别为:
- p1,p2,p3
- 由E(aA+bB+cC...)=aEA+bEB+cEC+...//包含状态A,B,C的期望可以分解子期望求解
- 得到dp[i][j]=p1*dp[i][j]+p2*dp[i+1][j]+p3*dp[i][j+1]+2;
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<stdlib.h>
#include<queue>
#include<cstring>
using namespace std;
#define N 1006
int n,m;
double mp[N][N][];
double dp[N][N];
int main()
{
while(scanf("%d%d",&n,&m)==){
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
for(int k=;k<=;k++){
scanf("%lf",&mp[i][j][k]);
}
}
}
memset(dp,,sizeof(dp));
for(int i=n;i>=;i--){
for(int j=m;j>=;j--){
if(i==n && j==m) continue;//如果是在出口点,则期望值为0
if(mp[i][j][]==1.0) continue;//该点无路可走,期望值肯定为0(dp[i][j]=0)
dp[i][j]=(dp[i][j+]*mp[i][j][]+dp[i+][j]*mp[i][j][]+)/(-mp[i][j][]);
}
}
printf("%.3lf\n",dp[][]);
}
return ;
}
hdu 3853 LOOPS(概率 dp 期望)的更多相关文章
- HDU 3853 LOOPS 概率DP入门
LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Total Sub ...
- hdu 3853 LOOPS 概率DP
简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...
- hdu 3853 LOOPS (概率dp 逆推求期望)
题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Tota ...
- HDU 3853 LOOP (概率DP求期望)
D - LOOPS Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit St ...
- LOOPS HDU - 3853 (概率dp):(希望通过该文章梳理自己的式子推导)
题意:就是让你从(1,1)走到(r, c)而且每走一格要花2的能量,有三种走法:1,停住.2,向下走一格.3,向右走一格.问在一个网格中所花的期望值. 首先:先把推导动态规划的基本步骤给出来. · 1 ...
- HDU 3853 LOOPS 可能性dp(水
在拐~ #include <stdio.h> #include <cstring> #include <iostream> #include <map> ...
- HDU 3853LOOPS(简单概率DP)
HDU 3853 LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...
- 2017 ICPC Asia Urumqi A.coins (概率DP + 期望)
题目链接:Coins Description Alice and Bob are playing a simple game. They line up a row of nn identical c ...
- luogu P6835 概率DP 期望
luogu P6835 概率DP 期望 洛谷 P6835 原题链接 题意 n + 1个节点,第i个节点都有指向i + 1的一条单向路,现在给他们添加m条边,每条边都从一个节点指向小于等于自己的一个节点 ...
- HDU 3853 LOOPS 期望dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Time Limit: 15000/5000 MS (Java/Others)Me ...
随机推荐
- json对象与字符串的相互转换,数组和字符串的转换
1.json对象转换为字符串 JSON.stringify(value [, replacer] [, space]) var student = new Object(); student.id ...
- gcc/g++/make 编译信息带颜色输出
假设编译一个项目错误警告太多.很不好找,所以很希望输出信息能够带有颜色. 但是 gcc 4.9.0 之前的版本号并不支持,非常多情况下是不能替换编译器的,比方使用交叉编译器, 也能够使用 colorg ...
- Difference between enabled and userInteractionEnabled properties
I read through the documentation, and here are my findings. UIButton inherits from UIControl the boo ...
- CentOS6.6修改主机名和网络信息
1.修改主机名称 [root@centos ~]# vim /etc/sysconfig/network #打开文件,修改以下内容并保存 NETWORKING=yes #使用网络HOSTNAME=ce ...
- openssl 非对称加密算法RSA命令详解
1.非对称加密算法概述 非对称加密算法也称公开密钥算法,其解决了对称加密算法密钥分配的问题,非对称加密算法基本特点如下: 1.加密密钥和解密密钥不同 2.密钥对中的一个密钥可以公开 3.根据公开密钥很 ...
- thinking in java知识小记(一)
知识点一(javadoc): 使用javadoc时特别注意选择encoding和charset为utf-8,要不然生成的javadoc会是乱码,命令:javadoc -encoding utf-8 - ...
- jQuery之.html()和.text()区别
.html()//获取标签和内容 .text()//只获取内容
- JavaScript操作剪贴板(转)
IE是第一个支持与剪贴板相关的事件,以及通过JavaScript访问剪贴板数据的浏览器.IE的实现成为了某种标准,不仅Safari 2.Chrome和Firefox 3也都支持类似的事件和剪贴板(Op ...
- VS2010 rdlc 被除数为0 显示错误号
=Sum(Fields!ROCKNUM.Value/Fields!SEND.Value*100) 当Fields!SEND.Value为0或者空时,显示错误号 修改: =IIF(isnothing(F ...
- JVM的内存区域划分划分及作用