HDU 5755 Gambler Bo(高斯消元)
【题目链接】 http://acm.hdu.edu.cn/showproblem.php?pid=5755
【题目大意】
一个n*m由0,1,2组成的矩阵,每次操作可以选取一个方格,使得它加上2之后对3取模,周围的四个方格加上1后对3取模,请你在n*m操作次数内让整个矩阵变成0。输出一种方案。
【题解】
枚举第一行的方式显然是不行的,因为3的30次方显然不是可以承受的范围,考虑如果存在第0行元素,那么这一行的最终状态就是第一行的操作次数,因为每个格子很明显只会由第一行对应的正下方的格子影响,我们在第n行操作次数已知的情况下,可以推得第n+1行的操作次数的情况,因此,我们假设第0行的元素为x1,x2……xm,逐行进行线性方程的变换,最后由于最后一行操作结束后必须使得该行全为0,那么我们可以得到m个线性方程,高斯消元可以解出第一行的操作次数。
注意到3是一个神奇的数字,所以在消元的过程中可以直接让确定行和预消除行的首元素相乘获得倍数关系。此外,系数在模情况下的变换和其在其余符号下的运算也是一样的。因为根据同余模定理,(3-t*x1)%3=(3*x1-t*x1)%3=(3-t)%3,所以系数可以和原数进行一样模运算。
【代码】
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
#define rep(i,n) for(int i=1;i<=n;i++)
const int N=35;
int ans,n,m,T,a[N][N],p[N][N],f[N][N][N];
int DP(int i,int j,int k){
int t=(f[i][j-1][k]+2*f[i][j][k]+f[i][j+1][k]+f[i-1][j][k])%3;
return ((3-t)%3+3)%3;
}
int GetAns(int i,int j){
int t=(p[i][j-1]+2*p[i][j]+p[i][j+1]+p[i-1][j]+a[i][j])%3;
return ((3-t)%3+3)%3;
}
void Gauss(int n,int m) {
int d,i,j,k,h,w=0;
for(i=1,j=1;j<m;j++,w=0){
for(k=i;k<=n;k++)if(p[k][j])w=k;
if(w){
for(k=j;k<=m;k++)swap(p[i][k],p[w][k]);
for(k=i+1;k<=n;k++)
if(p[k][j]){
d=p[k][j]*p[i][j]%3;
for(h=j;h<=m;h++)p[k][h]=(p[k][h]-d*p[i][h]+6)%3;
}i++;
}if(i>n)break;
}for(j=1;j<=m;j++)f[1][j][j]=0;
for(j=i-1;j;j--){
for(k=1;k<m;k++)if(p[j][k])break;
for (d=0,h=k+1;h<m;h++)if(f[1][h][h]&&p[j][h])d=(d+f[1][h][h]*p[j][h])%3;
f[1][k][k]=p[j][k]*(3-d+p[j][m])%3;
}memset(p,0,sizeof(p));
for(j=1;j<=m;j++)p[1][j]=(f[1][j][j]+3)%3;
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
rep(i,n)rep(j,m)scanf("%d",&a[i][j]);
memset(f,0,sizeof(f));
rep(i,m)f[1][i][i]=1;
rep(i,n)rep(j,m){
f[i+1][j][m+1]=(3-a[i][j]+DP(i,j,m+1))%3;
rep(k,m)f[i+1][j][k]=DP(i,j,k);
}memset(p,0,sizeof(p));
rep(i,m){
p[i][m+1]=((3-f[n+1][i][m+1])%3+3)%3;
rep(j,m)p[i][j]=f[n+1][i][j];
}Gauss(m,m+1);ans=0;
rep(i,m)ans+=p[1][i];
for(int i=2;i<=n;i++)rep(j,m)p[i][j]=GetAns(i-1,j),ans+=p[i][j];
printf("%d\n",ans);
rep(i,n)rep(j,m)rep(k,p[i][j])printf("%d %d\n",i,j);
}return 0;
}
HDU 5755 Gambler Bo(高斯消元)的更多相关文章
- hdu 5755 Gambler Bo 高斯消元
题目链接 给n*m的方格, 每个格子有值{0, 1, 2}. 然后可以对格子进行操作, 如果选择了一个格子, 那么这个格子的值+2, 这个格子上下左右的格子+1, 并且模3. 问你将所有格子变成0的操 ...
- hdu 5755 2016 Multi-University Training Contest 3 Gambler Bo 高斯消元模3同余方程
http://acm.hdu.edu.cn/showproblem.php?pid=5755 题意:一个N*M的矩阵,改变一个格子,本身+2,四周+1.同时mod 3;问操作多少次,矩阵变为全0.输出 ...
- Gambler Bo (高斯消元求特解)
对于图中的每一个点假设点击Xi * m + j 然后每个点都有那么对于每一个点可以列举出一个方程式,n*m个点解n*m个未知数.利用高斯消元就可以解决. 问题就在这个题目可能不止有一个特,所以我们需要 ...
- HDU 4870 Rating(高斯消元 )
HDU 4870 Rating 这是前几天多校的题目,高了好久突然听旁边的大神推出来说是可以用高斯消元,一直喊着赶快敲模板,对于从来没有接触过高斯消元的我来说根本就是一头雾水,无赖之下这几天做DP ...
- HDU 3949 XOR(高斯消元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题意:给出一个长度为n的数列A.选出A的所有子集(除空集外)进行抑或得到2^n-1个数字,去重排 ...
- [hdu 3949]线性基+高斯消元
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 一开始给做出来的线性基wa了很久,最后加了一步高斯消元就过了. 之所以可以这样做,证明如下. 首 ...
- HDU 3949 XOR(高斯消元搞基)
HDU 3949 XOR pid=3949" target="_blank" style="">题目链接 题意:给定一些数字,问任取几个异或值第 ...
- HDU 3364 Lanterns (高斯消元)
题意:有n个灯和m个开关,每个开关控制数个灯的状态改变,给出k条询问,问使灯的状态变为询问中的状态有多少种发法. 析:同余高斯消元法,模板题,将每个开关控制每个灯列成行列式,最终状态是结果列,同余高斯 ...
- [ACM] hdu 4418 Time travel (高斯消元求期望)
Time travel Problem Description Agent K is one of the greatest agents in a secret organization calle ...
随机推荐
- Linux网络管理——子网掩码
1. 网络基础 .note-content {font-family: "Helvetica Neue",Arial,"Hiragino Sans GB",&q ...
- android sdk 更新问题——截止2014年6月10日有效
因为墙的原因,很多人的sdk都更新不了,下面记录了我刚刚实现更新的方法: 进到Android SDK Manager,菜单Tools->Options..,这时弹出一个框,在这个框的下面Othe ...
- C# Socket SSL通讯笔记
一.x.509证书 1.制作证书 先进入到vs2005的命令行状态,即:开始-->程序-->Microsoft Visual Studio 2005-->Visual Studio ...
- Perfmon 介绍
1.UI 1.笔图标,可以把视图里的细线加粗. 2.加号图标.可以为视图添加新的记数器. 3.操作-->属性.可以用于设置默认的采样时间. 2.增加计数据器页面 1.一个计数据器会包涵多个对象. ...
- 《转》JAVA中PriorityQueue优先级队列使用方法
该文章转自:http://blog.csdn.net/hiphopmattshi/article/details/7334487 优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最 ...
- urllib2.URLError: <urlopen error [Errno 104] Connection reset by peer>
http://www.dianping.com/shop/8010173 File "综合商场1.py", line 152, in <module> httpC ...
- BZOJ 1143 [CTSC2008]祭祀river(二分图匹配)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1143 [题目大意] 给出一张有向图,问最大不连通点集,连通具有传递性 [题解] 我们将 ...
- linux 查看信息命令
# uname -a # 查看内核/操作系统/CPU信息# head -n 1 /etc/issue # 查看操作系统版本# cat /proc/cpuinfo # 查看CPU信息# hostname ...
- swift3.0 扩展、协议(4)
扩展和协议是swift中的两个特性,用于对已有的类型进行扩展和修改. 扩展(extension) 向已经存在的类型添加新的功能(属性.方法.下标脚本等等),扩展使用extension关键字定义,语法 ...
- POJ 3831 & HDU 3264 Open-air shopping malls(几何)
题目链接: POJ:id=3831" target="_blank">http://poj.org/problem?id=3831 HDU:http://acm.h ...