【题目链接】 http://acm.hdu.edu.cn/showproblem.php?pid=5755

【题目大意】

  一个n*m由0,1,2组成的矩阵,每次操作可以选取一个方格,使得它加上2之后对3取模,周围的四个方格加上1后对3取模,请你在n*m操作次数内让整个矩阵变成0。输出一种方案。

【题解】

  枚举第一行的方式显然是不行的,因为3的30次方显然不是可以承受的范围,考虑如果存在第0行元素,那么这一行的最终状态就是第一行的操作次数,因为每个格子很明显只会由第一行对应的正下方的格子影响,我们在第n行操作次数已知的情况下,可以推得第n+1行的操作次数的情况,因此,我们假设第0行的元素为x1,x2……xm,逐行进行线性方程的变换,最后由于最后一行操作结束后必须使得该行全为0,那么我们可以得到m个线性方程,高斯消元可以解出第一行的操作次数。

  注意到3是一个神奇的数字,所以在消元的过程中可以直接让确定行和预消除行的首元素相乘获得倍数关系。此外,系数在模情况下的变换和其在其余符号下的运算也是一样的。因为根据同余模定理,(3-t*x1)%3=(3*x1-t*x1)%3=(3-t)%3,所以系数可以和原数进行一样模运算。

【代码】

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
#define rep(i,n) for(int i=1;i<=n;i++)
const int N=35;
int ans,n,m,T,a[N][N],p[N][N],f[N][N][N];
int DP(int i,int j,int k){
int t=(f[i][j-1][k]+2*f[i][j][k]+f[i][j+1][k]+f[i-1][j][k])%3;
return ((3-t)%3+3)%3;
}
int GetAns(int i,int j){
int t=(p[i][j-1]+2*p[i][j]+p[i][j+1]+p[i-1][j]+a[i][j])%3;
return ((3-t)%3+3)%3;
}
void Gauss(int n,int m) {
int d,i,j,k,h,w=0;
for(i=1,j=1;j<m;j++,w=0){
for(k=i;k<=n;k++)if(p[k][j])w=k;
if(w){
for(k=j;k<=m;k++)swap(p[i][k],p[w][k]);
for(k=i+1;k<=n;k++)
if(p[k][j]){
d=p[k][j]*p[i][j]%3;
for(h=j;h<=m;h++)p[k][h]=(p[k][h]-d*p[i][h]+6)%3;
}i++;
}if(i>n)break;
}for(j=1;j<=m;j++)f[1][j][j]=0;
for(j=i-1;j;j--){
for(k=1;k<m;k++)if(p[j][k])break;
for (d=0,h=k+1;h<m;h++)if(f[1][h][h]&&p[j][h])d=(d+f[1][h][h]*p[j][h])%3;
f[1][k][k]=p[j][k]*(3-d+p[j][m])%3;
}memset(p,0,sizeof(p));
for(j=1;j<=m;j++)p[1][j]=(f[1][j][j]+3)%3;
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
rep(i,n)rep(j,m)scanf("%d",&a[i][j]);
memset(f,0,sizeof(f));
rep(i,m)f[1][i][i]=1;
rep(i,n)rep(j,m){
f[i+1][j][m+1]=(3-a[i][j]+DP(i,j,m+1))%3;
rep(k,m)f[i+1][j][k]=DP(i,j,k);
}memset(p,0,sizeof(p));
rep(i,m){
p[i][m+1]=((3-f[n+1][i][m+1])%3+3)%3;
rep(j,m)p[i][j]=f[n+1][i][j];
}Gauss(m,m+1);ans=0;
rep(i,m)ans+=p[1][i];
for(int i=2;i<=n;i++)rep(j,m)p[i][j]=GetAns(i-1,j),ans+=p[i][j];
printf("%d\n",ans);
rep(i,n)rep(j,m)rep(k,p[i][j])printf("%d %d\n",i,j);
}return 0;
}

  

HDU 5755 Gambler Bo(高斯消元)的更多相关文章

  1. hdu 5755 Gambler Bo 高斯消元

    题目链接 给n*m的方格, 每个格子有值{0, 1, 2}. 然后可以对格子进行操作, 如果选择了一个格子, 那么这个格子的值+2, 这个格子上下左右的格子+1, 并且模3. 问你将所有格子变成0的操 ...

  2. hdu 5755 2016 Multi-University Training Contest 3 Gambler Bo 高斯消元模3同余方程

    http://acm.hdu.edu.cn/showproblem.php?pid=5755 题意:一个N*M的矩阵,改变一个格子,本身+2,四周+1.同时mod 3;问操作多少次,矩阵变为全0.输出 ...

  3. Gambler Bo (高斯消元求特解)

    对于图中的每一个点假设点击Xi * m + j 然后每个点都有那么对于每一个点可以列举出一个方程式,n*m个点解n*m个未知数.利用高斯消元就可以解决. 问题就在这个题目可能不止有一个特,所以我们需要 ...

  4. HDU 4870 Rating(高斯消元 )

    HDU 4870   Rating 这是前几天多校的题目,高了好久突然听旁边的大神推出来说是可以用高斯消元,一直喊着赶快敲模板,对于从来没有接触过高斯消元的我来说根本就是一头雾水,无赖之下这几天做DP ...

  5. HDU 3949 XOR(高斯消元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题意:给出一个长度为n的数列A.选出A的所有子集(除空集外)进行抑或得到2^n-1个数字,去重排 ...

  6. [hdu 3949]线性基+高斯消元

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 一开始给做出来的线性基wa了很久,最后加了一步高斯消元就过了. 之所以可以这样做,证明如下. 首 ...

  7. HDU 3949 XOR(高斯消元搞基)

    HDU 3949 XOR pid=3949" target="_blank" style="">题目链接 题意:给定一些数字,问任取几个异或值第 ...

  8. HDU 3364 Lanterns (高斯消元)

    题意:有n个灯和m个开关,每个开关控制数个灯的状态改变,给出k条询问,问使灯的状态变为询问中的状态有多少种发法. 析:同余高斯消元法,模板题,将每个开关控制每个灯列成行列式,最终状态是结果列,同余高斯 ...

  9. [ACM] hdu 4418 Time travel (高斯消元求期望)

    Time travel Problem Description Agent K is one of the greatest agents in a secret organization calle ...

随机推荐

  1. Java提高学习之Object(3)

    终止 问: finalize()方法是用来做什么的? 答: finalize()方法可以被子类对象所覆盖,然后作为一个终结者,当GC被调用的时候完成最后的清理工作(例如释放系统资源之类).这就是终止. ...

  2. js点击更多显示更多内容效果

    我写了一个简单的分段显示插件,用法很简单:1,把你要分面显示的内容的容器元素增加一个class=showMoreNChildren,并增加一个自定义属性pagesize="8" 这 ...

  3. sp<> 强指针类的用法

    在android 中可以广泛看到的template<typename T>,  class Sp 句柄类实际上是android 为实现垃圾回收机制的智能指针.智能指针是c++ 中的一个概念 ...

  4. 刷爆github小绿点

    转载请注明出处:https://ahangchen.gitbooks.io/windy-afternoon/content/kit/git/green_blush.html 工程地址,欢迎star!! ...

  5. 不能取组织ID

    应用 Oracle   Purchasing 层 Level Function 函数名 Funcgtion Name PO_POXBWVRP 表单名 Form Name POXBWVRP 说明 Des ...

  6. UberX及以上级别车奖励政策(优步北京第二、三组)

    优步北京第二.三组: 定义为2015年6月1日至7月19日激活的司机(以优步后台数据显示为准) 滴滴快车单单2.5倍,注册地址:http://www.udache.com/如何注册Uber司机(全国版 ...

  7. img 中的src的应用

    在页面载入的时候,img标签的src 会跟填写的内容去载入,servlet 或者controller 或者你自己觉得希望载入的java代码. 我们这边举一个载入servlet的样例. <img ...

  8. 弹出窗口a标签写下载,再弹出窗口

    如果这个窗口是弹出出口,直接<a href="">点击下载<a>是不行的,得用js这样写,弹出并关闭,不然会回到首页,如果没有定义首页会报错,<a h ...

  9. hive 分配map数过少导致任务执行慢

    数据表大概150M,但是只有几个字段,导致行数特别多,当使用正则表达式去匹配时执行较慢. 解决思路:增大map数; //设置reduce数为150,将原表分成150份,map数无法直接设置,因为和输入 ...

  10. objective-C学习笔记(一)OBJC简介

    如何掌握一门高级编程语言:(这里特指Objective-C) 底层思维:   向下,如何从机器底层的角度来思考程序运行的过程. 关注语言构造.编译转换.内存模型.运行时机制 抽象思维:   向上,当软 ...