在 Spark 的 bin 目录中的 spark-submit 脚本用与在集群上启动应用程序。它可以通过一个统一的接口使用所有 Spark 支持的 Cluster Manager,所以您不需要专门的为每个 Cluster Manager 来配置您的应用程序。

打包应用依赖

如果您的代码依赖了其它的项目,为了分发代码到 Spark 集群中您将需要将它们和您的应用程序一起打包。为此,创建一个包含您的代码以及依赖的 assembly jar(或者 “uber” jar)。无论是 sbt 还是 Maven 都有 assembly 插件。在创建 assembly jar 时,列出 Spark 和 Hadoop 提供的依赖。它们不需要被打包,因为在运行时它们已经被 Cluster Manager 提供了。如果您有一个 assembled jar 您就可以调用 bin/spark-submit 脚本(如下所示)来传递您的 jar

对于 Python 来说,您可以使用 spark-submit 的 --py-files 参数来添加 .py.zip 和 .egg 文件以与您的应用程序一起分发。如果您依赖了多个 Python 文件我们推荐将它们打包成一个 .zip 或者 .egg 文件。

用 spark-submit 启动应用

如果用户的应用程序被打包好了,它可以使用 bin/spark-submit 脚本来启动。这个脚本负责设置 Spark 和它的依赖的 classpath,并且可以支持 Spark 所支持的不同的 Cluster Manager 以及 deploy mode(部署模式):

./bin/spark-submit \
--class <main-class> \
--master <master-url> \
--deploy-mode <deploy-mode> \
--conf <key>=<value> \
... # other options
<application-jar> \
[application-arguments]

一些常用的 options(选项)有 :

  • --class : 您的应用程序的入口点(例如。org.apache.spark.examples.SparkPi)。
  • --master : 集群的 Master URL(例如。spark://23.195.26.187:7077)。
  • --deploy-mode : 是在 worker 节点(cluster)上还是在本地作为一个外部的客户端(client)部署您的 driver(默认 : client†。
  • --conf : 按照 key=value 格式任意的 Spark 配置属性。对于包含空格的 value(值)使用引号包 “key=value” 起来。
  • application-jar : 包括您的应用以及所有依赖的一个打包的 Jar 的路径。该 URL 在您的集群上必须是全局可见的,例如,一个 hdfs:// path 或者一个 file:// path 在所有节点是可见的。
  • application-arguments : 传递到您的 main class 的 main 方法的参数,如果有的话。

† 常见的部署策略是从一台 gateway 机器物理位置与您 worker 在一起的机器(比如,在 standalone EC2 集群中的 Master 节点上)来提交您的应用。在这种设置中,client 模式是合适的。在 client 模式中,driver 直接运行在一个充当集群 client 的 spark-submit 进程内。应用程序的输入和输出直接连到控制台。因此,这个模式特别适合那些设计 REPL(例如,Spark shell)的应用程序。

另外,如果您从一台远离 worker 机器的机器(例如,本地的笔记本电脑上)提交应用程序,通常使用 cluster 模式来降低 driver 和 executor 之间的延迟。目前,Standalone 模式不支持 Cluster 模式的 Python 应用。

对于 Python 应用,在 <application-jar> 的位置简单的传递一个 .py 文件而不是一个 JAR,并且可以用 --py-files 添加 Python .zip.egg 或者 .py 文件到 search path(搜索路径)。

这里有一些选项可用于特定的 Cluster Manager 中。例如,Spark standalone cluster 用 cluster 部署模式,您也可以指定 --supervise 来确保 driver 在 non-zero exit code 失败时可以自动重启。为了列出所有 spark-submit 可用的选项,用 --help 来运行它。这里是一些常见选项的例子 :

# Run application locally on  cores
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[] \
/path/to/examples.jar \ # Run on a Spark standalone cluster in client deploy mode
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://207.184.161.138:7077 \
--executor-memory 20G \
--total-executor-cores \
/path/to/examples.jar \ # Run on a Spark standalone cluster in cluster deploy mode with supervise
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://207.184.161.138:7077 \
--deploy-mode cluster \
--supervise \
--executor-memory 20G \
--total-executor-cores \
/path/to/examples.jar \ # Run on a YARN cluster
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \ # can be client for client mode
--executor-memory 20G \
--num-executors \
/path/to/examples.jar \ # Run a Python application on a Spark standalone cluster
./bin/spark-submit \
--master spark://207.184.161.138:7077 \
examples/src/main/python/pi.py \ # Run on a Mesos cluster in cluster deploy mode with supervise
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master mesos://207.184.161.138:7077 \
--deploy-mode cluster \
--supervise \
--executor-memory 20G \
--total-executor-cores \
http://path/to/examples.jar \

Master URL

传递给 Spark 的 master URL 可以使用下列格式中的一种 :

Master URL
Meaning
local

使用一个线程本地运行 Spark(即,没有并行性)。

local[K]

使用 K 个 worker 线程本地运行 Spark(理想情况下,设置这个值的数量为您机器的 core 数量)。

local[*]

使用更多的 worker 线程作为逻辑的 core 在您的机器上来本地的运行 Spark

spark://HOST:PORT

连接至给定的 Spark standalone cluster master。该 port(端口)必须有一个作为您的 master 配置来使用,默认是 7077.

mesos://HOST:PORT

连接至给定的 Mesos cluster。该 port(端口)必须有一个作为您的配置来使用,默认是 5050。或者,对于使用了 ZooKeeper 的 Mesos cluster 来说,使用 mesos://zk://...。使用 --deploy-mode cluster 来提交,该 HOST:PORT 应该被配置以连接到 MesosClusterDispatcher。

yarn

连接至一个 YARNcluster,部署是在 client 或者 cluster 模式取决于 --deploy-mode 的值。该 cluster 的位置将根据 HADOOP_CONF_DIR 或者 YARN_CONF_DIR 变量来找到。

从文件中加载配置

spark-submit 脚本可以从一个 properties 文件加载默认的 Spark configuration values 并且传递它们到您的应用中去。默认情况下,它将从 Spark 目录下的 conf/spark-defaults.conf 读取配置。

加载默认的 Spark 配置,这种方式可以消除某些标记到 spark-submit 的必要性。例如,如果 spark.master 属性被设置了,您可以在 spark-submit 中安全的省略。一般情况下,明确设置在 SparkConf 上的配置值的优先级最高,然后是传递给 spark-submit 的值,最后才是 default value(默认文件)中的值。

如果您不是很清楚其中的配置设置来自哪里,您可以通过使用 --verbose 选项来运行 spark-submit 打印出细粒度的调试信息。

先进的依赖管理

在使用 spark-submit 时,使用 --jars 选项包括的应用程序的 jar 和任何其它的 jar 都将被自动的传输到集群。在 --jars 后面提供的 URL 必须用逗号分隔。该列表传递到 driver 和 executor 的 classpath 中 --jars 不支持目录的形式。

Spark 使用下面的 URL 方案以允许传播 jar 时使用不同的策略 :

  • file: - 绝对路径和 file:/ URI 通过 driver 的 HTTP file server 提供服务,并且每个 executor 会从 driver 的 HTTP server 拉取这些文件。
  • hdfs:,http:,https:,ftp: - 如预期的一样拉取下载文件和 JAR
  • local: - 一个用 local:/ 开头的 URL 预期作在每个 worker 节点上作为一个本地文件存在。这样意味着没有网络 IO 发生,并且非常适用于那些通过 NFSGlusterFS,等推倒每个 worker 或共享大型的 file/JAR

注意,那些 JAR 和文件被复制到 working directory(工作目录)用于在 executor 节点上的每个 SparkContext。这可以使用最多的空间显著量随着时间的推移,将需要清理。在 Spark On YARN 模式中,自动执行清理操作。在 Spark standalone 模式中,可以通过配置 spark.worker.cleanup.appDataTtl 属性来执行自动清理。

用户也可以通过使用 --packages 来提供一个逗号分隔的 maven coordinatesmaven 坐标)以包含任何其它的依赖。在使用这个命令时所有可传递的依赖将被处理。其它的 repository(或者在 SBT 中被解析的)可以使用 --repositoies 该标记添加到一个逗号分隔的样式中。这些命令可以与 pysparkspark-shell 和 spark-submit 配置会使用以包含 Spark PackagesSpark 包)。

对于 Python 来说,也可以使用 --py-files 选项用于分发 .egg.zip 和 .py libraries 到 executor 中。

Spark应用提交的更多相关文章

  1. Spark学习(四) -- Spark作业提交

    标签(空格分隔): Spark 作业提交 先回顾一下WordCount的过程: sc.textFile("README.rd").flatMap(line => line.s ...

  2. Spark集群模式&Spark程序提交

    Spark集群模式&Spark程序提交 1. 集群管理器 Spark当前支持三种集群管理方式 Standalone-Spark自带的一种集群管理方式,易于构建集群. Apache Mesos- ...

  3. Spark任务提交底层原理

    Driver的任务提交过程 1.Driver程序的代码运行到action操作,触发了SparkContext的runJob方法.2.SparkContext调用DAGScheduler的runJob函 ...

  4. spark任务提交到yarn上命令总结

    spark任务提交到yarn上命令总结 1. 使用spark-submit提交任务 集群模式执行 SparkPi 任务,指定资源使用,指定eventLog目录 spark-submit --class ...

  5. Spark作业提交至Yarn上执行的 一个异常

    (1)控制台Yarn(Cluster模式)打印的异常日志: client token: N/A         diagnostics: Application application_1584359 ...

  6. 【原创】大数据基础之Spark(1)Spark Submit即Spark任务提交过程

    Spark2.1.1 一 Spark Submit本地解析 1.1 现象 提交命令: spark-submit --master local[10] --driver-memory 30g --cla ...

  7. Spark Standalone 提交模式

    一.Client提交模式 提交命令: ./spark-submit --master spark://node1:7077 --class org.apache.spark.examples.Spar ...

  8. 【Spark-core学习之四】 Spark任务提交

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...

  9. Spark任务提交jar包依赖解决方案

    转载自:http://blog.csdn.net/wzq294328238/article/details/48054525                    通常我们将Spark任务编写后打包成 ...

  10. Spark程序提交到Yarn集群时所遇异常

    Exception 1:当我们将任务提交给Spark Yarn集群时,大多会出现以下异常,如下: 14/08/09 11:45:32 WARN component.AbstractLifeCycle: ...

随机推荐

  1. Webpack实例教程及模块化规范

    Webpack 是当下最热门的前端资源模块化管理和打包工具.它能够将很多松散的模块依照依赖和规则打包成符合生产环境部署的前端资源. 通过 loader 的转换,不论什么形式的资源都能够视作模块,比方 ...

  2. 矩阵hash + KMP - UVA 12886 The Big Painting

    The Big Painting Problem's Link: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=88791 M ...

  3. JavaScript重载

    在Javascript 中,每个函数都有一个隐含的对象arguments,表示给函数 实际传给的参数 ,那么我们可以用 arguments来实现函数的重载 <!DOCTYPE html PUBL ...

  4. Tensorflow 梯度下降实例

    # coding: utf-8 # #### 假设我们要最小化函数 $y=x^2$, 选择初始点 $x_0=5$ # #### 1. 学习率为1的时候,x在5和-5之间震荡. # In[1]: imp ...

  5. SQL命令优化(积累)

    与数据库交互的基本语言是sql,数据库每次解析和执行sql语句多需要执行很多步骤.以sql server为例,当数据库收到一条查询语句时,语法分析器会扫描sql语句并将其分成逻辑单元(如关键词.表达式 ...

  6. C# 流总结(Stream)

    本篇文章简单总结了在C#编程中经常会用到的一些流.比如说FileStream.MemoryStream. BufferedStream. NetWorkStream. StreamReader/Str ...

  7. 我的Android进阶之旅------&gt;MIME类型大全

    今天在实现一个安装apk的代码中看到一段代码为:application/vnd.android.package-archive.不知其意.所以百度了一下,了解到这是一种MIME的类型,代表apk类型. ...

  8. Codeforces Round #311 (Div. 2) A,B,C,D,E

    A. Ilya and Diplomas 思路:水题了, 随随便便枚举一下,分情况讨论一下就OK了. code: #include <stdio.h> #include <stdli ...

  9. AngularJS------各种版本下载地址

    转载: http://blog.csdn.net/Rongbo_J/article/details/51325606 下载地址: github https://github.com/angular/a ...

  10. Android "Please ensure that adb is correctly located at" 错误

    转自:http://blog.csdn.net/hyx1990/article/details/12681207 遇到问题描述: 运行Android程序控制台输出 [2013-10-13 16:45: ...