【BZOJ】1492: [NOI2007]货币兑换Cash
【题意】初始资金s,有两种金券A和B,第i天,买入时将投入的资金购买比例为rate[i]的两种股票,卖出时将持有的一定比例的两种股票卖出,第i天股票价格为A[i],B[i],求最大获利。n<=100000。
【算法】动态规划+斜率优化(CDQ分治)
【题解】为了最大获利,每次交易一定是全部买进和全部卖出。
令s[i]表示前i天的最大获利,f[i]表示第i天能购买的最多A股数,g[i]=f[i]/rate[i]表示第i天能购买的最多B股数。
s[i]=max{ s[i-1] , f[j]*A[i]+g[j]*B[i] },j<i。
g[i]=s[i]/(A[i]*rate[i]+B[i])
f[i]=g[i]*rate[i]
对于决策j和k,假设f[j]<f[k],当k优于j时有:
f[j]*A[i]+g[j]*B[i]<f[k]*A[i]+g[k]*B[i]
移向得(g[j]-g[k])/(f[j]-f[k])>-A[i]/B[i],令k[i]=-A[i]/B[i],所以:
对于满足f[j]<f[k]的决策j和k,满足(g[j]-g[k])/(f[j]-f[k])>k[i]时决策k优于决策j。
然后用CDQ分治维护动态上凸包,按阶段分治,左子区间按x[]排序构造凸包,右子区间按k[]排序顺序决策。
具体过程见:CDQ分治优化动态规划
复杂度O(n log n)。
#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=;
const double eps=1e-,inf=;
double s[maxn];
int n,st[maxn];
struct cyc{int id;double A,B,r,k,x,y;}a[maxn],b[maxn];
bool cmp(cyc a,cyc b){return a.k>b.k;}
double k(int A,int B){
if(fabs(a[A].x-a[B].x)<eps){if(a[B].y<a[A].y)return -inf;else return inf;}
return (a[A].y-a[B].y)/(a[A].x-a[B].x);
}
void CDQ(int l,int r){
if(l==r){
s[l]=max(s[l],s[l-]);
a[l].y=s[l]/(a[l].A*a[l].r+a[l].B);
a[l].x=a[l].y*a[l].r;
return;
}
int mid=(l+r)>>;
int x1=l-,x2=mid;
for(int i=l;i<=r;i++)if(a[i].id<=mid)b[++x1]=a[i];else b[++x2]=a[i];
for(int i=l;i<=r;i++)a[i]=b[i];
CDQ(l,mid);
int top=;
for(int i=l;i<=mid;i++){
while(top>&&k(st[top],i)>k(st[top-],st[top]))top--;
st[++top]=i;
}
int x=;
for(int i=mid+;i<=r;i++){
while(x<top&&k(st[x],st[x+])>a[i].k)x++;
s[a[i].id]=max(s[a[i].id],a[st[x]].x*a[i].A+a[st[x]].y*a[i].B);
}
CDQ(mid+,r);
x1=l,x2=mid+;
for(int i=l;i<=r;i++){
if(x1>mid)b[i]=a[x2++];else
if(x2>r)b[i]=a[x1++];else
if(a[x1].x<a[x2].x)b[i]=a[x1++];else b[i]=a[x2++];
}
for(int i=l;i<=r;i++)a[i]=b[i];
}
int main(){
scanf("%d%lf",&n,&s[]);
for(int i=;i<=n;i++){
a[i].id=i;
scanf("%lf%lf%lf",&a[i].A,&a[i].B,&a[i].r);
a[i].k=-a[i].A/a[i].B;
}
sort(a+,a+n+,cmp);
CDQ(,n);
printf("%.3lf",s[n]);
return ;
}
【BZOJ】1492: [NOI2007]货币兑换Cash的更多相关文章
- BZOJ 1492: [NOI2007]货币兑换Cash( dp + 平衡树 )
dp(i) = max(dp(i-1), x[j]*a[i]+y[j]*b[i]), 0<j<i. x, y表示某天拥有的最多钱去买金券, 金券a和金券b的数量. 然后就很明显了...平衡 ...
- ●BZOJ 1492 [NOI2007]货币兑换Cash
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1492 题解: 斜率优化DP,CDQ分治 定义$DP[i]$为第i天结束后的最大收益. 由于题 ...
- bzoj 1492 [NOI2007]货币兑换Cash(斜率dp+cdq分治)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1492 [题意] 有AB两种货币,每天可以可以付IPi元,买到A券和B券,且A:B= ...
- 斜率优化(CDQ分治,Splay平衡树):BZOJ 1492: [NOI2007]货币兑换Cash
Description Input 第一行两个正整数N.S,分别表示小Y 能预知的天数以及初始时拥有的钱数. 接下来N 行,第K 行三个实数AK.BK.RateK,意义如题目中所述 Output 只有 ...
- BZOJ 1492: [NOI2007]货币兑换Cash [CDQ分治 斜率优化DP]
传送门 题意:不想写... 扔链接就跑 好吧我回来了 首先发现每次兑换一定是全部兑换,因为你兑换说明有利可图,是为了后面的某一天两种卷的汇率差别明显而兑换 那么一定拿全利啊,一定比多天的组合好 $f[ ...
- bzoj 1492: [NOI2007]货币兑换Cash
Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...
- BZOJ 1492 [NOI2007]货币兑换Cash:斜率优化dp + cdq分治
传送门 题意 初始时你有 $ s $ 元,接下来有 $ n $ 天. 在第 $ i $ 天,A券的价值为 $ A[i] $ ,B券的价值为 $ B[i] $ . 在第 $ i $ 天,你可以进行两种操 ...
- bzoj 1492: [NOI2007]货币兑换Cash【贪心+斜率优化dp+cdq】
参考:http://www.cnblogs.com/lidaxin/p/5240220.html 虽然splay会方便很多,但是懒得写,于是写了cdq 首先要想到贪心的思路,因为如果在某天买入是能得到 ...
- BZOJ 1492 [NOI2007]货币兑换Cash (CDQ分治/splay 维护凸包)
题目大意:太长了略 splay调了两天一直WA弃疗了 首先,我们可以猜一个贪心,如果买/卖,就一定都买/卖掉,否则不买/卖 反正货币的行情都是已知的,没有任何风险,所以肯定要选择最最最优的方案了 容易 ...
- BZOJ 1492: [NOI2007]货币兑换Cash 斜率优化 + splay动态维护凸包
Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...
随机推荐
- Maven基本理解
转 maven(一) maven到底是个啥玩意~ 我记得在搞懂maven之前看了几次重复的maven的教学视频.不知道是自己悟性太低还是怎么滴,就是搞不清楚,现在弄清楚了,基本上入门了.写该篇博文,就 ...
- 模拟jq的设置样式
//需求,创建一个div,添加到页面上,给div添加属性 //面向对象开发,构造函数创建类 function divTag(){ this.div1=document.createElement('d ...
- 【Linux】- 对find,xargs,grep和管道的一些理解
问题 相信大家都知道在目录中搜索含有固定字符串文件的命令: find . -name '*.py' |xargs grep test 刚开始的时候,我不熟悉xargs命令,所以直接使用的命令是: fi ...
- Java JVM- jstat查看jvm的GC情况[转]
ava通过jvm自己管理内存,同时Java提供了一些命令行工具,用于查看内存使用情况.这里主要介绍一下jstat.jmap命令以及相关工具. 一.jstat查看 gc实时执行情况 jstat命令命令格 ...
- 【数据库】Mysql更改默认引擎为Innodb的步骤方法
前言 InnoDB和MyISAM是许多人在使用MySQL时最常用的两个表类型,这两个表类型各有优劣,视具体应用而定. 基本的差别为:MyISAM类型不支持事务处理等高级处理,而InnoDB类型支持.M ...
- Solr实现SQL的查询与统计--转载
原文地址:http://shiyanjun.cn/archives/78.html Cloudera公司已经推出了基于Hadoop平台的查询统计分析工具Impala,只要熟悉SQL,就可以熟练地使用I ...
- 【服务器_Tomcat】Tomcat的Server Options选项
一.配置 默认前两个是没有勾选的,应该勾选上: 在Cotext节点中有一个reloadable='true'属性,将它改为false,可以在修改java文件后不用重启服务器即可生效,但是不包括新建ja ...
- BZOJ4899 记忆的轮廓(概率期望+动态规划+决策单调性)
容易发现跟树没什么关系,可以预处理出每个点若走向分叉点期望走多少步才能回到上个存档点,就变为链上问题了.考虑dp,显然有f[i][j]表示在i~n中设置了j个存档点,其中i设置存档点的最优期望步数.转 ...
- 洛谷 [USACO09OPEN]工作调度
题面 读完题,我们会发现有一个很重要的信息,每件物品代价相同,但价值不同.那么我们很容易想到,在满足限制的情况下,我们肯定会选择价值尽可能大的物品. 我们可否用背包来实现呢,答案是否定的,或者说我不会 ...
- 线段树之Sum
题面: 给定一数列,规定有两种操作,一是修改某个元素,二是求区间的连续和. Input: 输入数据第一行包含两个正整数n,m(n<=100000,m<=500000),以下是m行, 每行有 ...